supplementary materials


rk2371 scheme

Acta Cryst. (2012). E68, o2753-o2754    [ doi:10.1107/S1600536812035453 ]

2-{[2,2-Bis(diethylamino)ethan-2-yliumthioyl]sulfanyl}-1,1-bis(diethylamino)ethylium bis(perchlorate)

K. Ohno, T. Sugaya, T. Fujihara and A. Nagasawa

Abstract top

The title salt, C20H42N4S22+·2ClO4-, was obtained from the reaction of bis(diethylamino)carbeniumdithiocarboxylate, (Et2N)2C2S2, with Fe(ClO4)2·6H2O in CH2Cl2. The title compound, in which one of the S atoms of (Et2N)2C2S2 is bound to a 1,1-bis(diethylamino)ethane moiety, has two carbenium C atoms, and the charge compensation is provided by two perchlorate anions. The N2C-CS2 bond length is 1.512 (4) Å, corresponding to a C-C single bond, and the dihedral angle between N2C- and -CS2 planes [72.0 (2)°] is smaller than that of (Et2N)2C2S2 [82.0 (1)°]. The crystal structure features C-H...S hydrogen bonds.

Comment top

Bis(N,N-disubsituted amino)carbeniumdithiocarboxylates [(R2N)2C2S2], which have a zwitterionic (inner-salt) form and a neutral form as canonical structures (Nagasawa et al., 1995; Fujihara et al., 2002), are structurally and reactively interesting (Winberg & Coffman, 1965; Otani et al., 1998; Nakayama & Akiyama, 1992; Nakayama et al., 2000; Nakayama, 2000, 2002; Banerjee & Zubieta, 2004; Siemeling et al., 2012). We have reported the syntheses, structures, and properties of the various transition metal complexes using (R2N)2C2S2 as ligands (Miyashita et al., 1998; Banerjee et al., 2002; Fujihara et al., 2004; Sugaya et al., 2009), and the ligands act as neutral monodentate, bridging, and chelating ligands maintaining the characteristic zwitterionic form.

In the process of a preparation of iron(II) complex with bis(N,N-diethylamino)carbeniumdithiocarboxylate [(Et2N)2C2S2] (II) (Fig 1), we obtained the unexpectedly bis(diethylamino)-methylium bis(diethylamino)-2-ethyliumcarbodithioate perchlorate [(C10H20N2S2)(C10H20N2)](ClO4)2 (I) and report here its molecular structure. We suppose that I was formed through an oxidation of II, which has taken place under gentle conditions for several months in solution. The molecular structure of I is shown in Fig. 2. The C11–S1 bond length is 1.794 (3) Å, which corresponds to the C–S single bond [1.79 (1)–1.82 (1)Å; Miller et al., 2000; 1.78 (4)Å; Nakayama et al., 1997]. The N–C(CS2) bond lengths in the range of 1.316 (4)–1.333 (4) Å are slightly shorter than the normal C(sp3)–N(sp3) bond length (1.36Å; Allen et al., 1987) suggesting that the C2 and C12 atoms are carbenium carbons. The bond lengths of C1–S2 [1.615 (3) Å] and C1–S1 [1.729 (3) Å] are close to those of the CS terminal and the –C–S– bridging bonds of methylated species of I, respectively [1.608 (14)Å and 1.714 (13)Å, respectively; Nakayama et al., 1997], indicating localization of electron on S–C–S moiety. The C1–C2 bond length [1.512 (4) Å] and dihedral angle between N2C– and –CS2 planes [71.99 (22)°] are slightly longer and smaller, respectively, than those of II [1.477Å–1.506 (2)Å and 82.0 (1)°, respectively; Nagasawa et al., 1995], and these change mean that decrease of interaction between the unfilled p orbital of carbenium carbon (C2) and electrons on S–C–S moiety. The C11–C12 bond length 1.523 (4)Å is slightly longer than that of C1–C2. The S1–C1–S2, N1–C2–N2, and N3–C12–N4 bond angles are similar values for those of II [S–C–S: 129.4 (8)° and N–C–N: 122 (1)°; Nagasawa et al., 1995]. Two ClO4- per one I exist as counter ions in the crystal. The crystal structure consists of a chain structure through intermolecular weak C—H···S hydrogen bonding [H14B···S1': 2.9138 Å, C14–H14B···S1': 176.69°] (Fig. 3 and Hydrogen-bond geometry).

Related literature top

For general background to bis(N,N-disubstituted amino)carbeniumdithiocarboxylates, see: Winberg & Coffman (1965); Nagasawa et al. (1995); Nakayama & Akiyama (1992); Nakayama et al. (1997, 2000); Nakayama (2000, 2002); Miller et al. (2000); Fujihara et al. (2002); Siemeling et al. (2012). For transition metal complexes, see: Miyashita et al. (1998); Banerjee et al. (2002); Fujihara et al. (2004); Sugaya et al. (2009). For the cationic dimer of bis(N,N-disubstituted amino)carbeniumdithiocarboxylates, see: Otani et al. (1998); Banerjee & Zubieta (2004). For reference bond-length data, see: Allen et al. (1987).

Experimental top

All the processes were carried out under an argon atmosphere using standard Schlenk techniques. Fe(ClO4)2.6H2O (0.076 g, 0.21 mmol) was dissolved in CH3CN (15 cm3). After stirring for 1 h at room temperature, the solvent was removed by evaporation under reduced pressure. The resulting powder (white) and II (0.141 g, 0.60 mmol) were dissolved in CH2Cl2 (30 cm3) and stirred for 1 h at room temperature. The insoluble salt was then filtered off, and the solvent of the filtrate was removed by evaporation under reduced pressure. The resulting powder was dissolved in CH2Cl2, layered with Et2O, and set aside for several months at room temperature. The red-purple crystals were obtained and dried in vacuo. Yield 0.011 g. (6.2% based on the II). 1H NMR, CD3CN δ 4.62 (s, 2H, -S–CH2-), 3.55 (dq, 16H, CH3–CH2-) 1.27 (q, 24H, CH3-). 13C NMR, CD3CN δ 213.3 (S-C-S), 167.0 (N–C–N), 163.6 (N–C–N), 49.1 (CH3CH2-), 48.7 (CH3CH2-), 36.9 (S-CH2-), 13.7 (CH3). Analysis found: C 39.72, H 7.04, N 9.16%; calculated for C20H42Cl2N4O8S2: C 39.93, H 7.04, N 9.31%.

Refinement top

All the non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C–H = 0.99Å, Uiso(H) = 1.2Ueq(C) for methylene atoms and C–H = 0.98Å, Uiso(H) = 1.5Ueq(C) for methyl atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The chemical structure of (II).
[Figure 2] Fig. 2. The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. A view of the crystal packing, showing the hydrogen bonding (dashed lines). All counter ions (ClO4-) have been omitted for clarity.
2-{[2,2-Bis(diethylamino)ethan-2-yliumthioyl]sulfanyl}-1,1- bis(diethylamino)ethylium bis(perchlorate) top
Crystal data top
C20H42N4S22+·2ClO4F(000) = 1280
Mr = 601.62Dx = 1.350 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3791 reflections
a = 8.4158 (7) Åθ = 2.3–25.2°
b = 16.1889 (13) ŵ = 0.41 mm1
c = 21.7213 (18) ÅT = 150 K
V = 2959.4 (4) Å3Block, red
Z = 40.32 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7058 independent reflections
Radiation source: fine-focus sealed tube5641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.366 pixels mm-1θmax = 27.9°, θmin = 1.6°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2021
Tmin = 0.881, Tmax = 0.923l = 1828
21803 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0814P)2P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
7058 reflectionsΔρmax = 0.70 e Å3
333 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 3081 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (7)
Crystal data top
C20H42N4S22+·2ClO4V = 2959.4 (4) Å3
Mr = 601.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4158 (7) ŵ = 0.41 mm1
b = 16.1889 (13) ÅT = 150 K
c = 21.7213 (18) Å0.32 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7058 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5641 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.923Rint = 0.046
21803 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.70 e Å3
S = 1.02Δρmin = 0.26 e Å3
7058 reflectionsAbsolute structure: Flack (1983), 3081 Friedel pairs
333 parametersFlack parameter: 0.00 (7)
0 restraints
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.5375 (0.0177) x + 3.5865 (0.0590) y + 12.8042 (0.0841) z = 5.1962 (0.0328)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C2 * 0.0000 (0.0000) N2

Rms deviation of fitted atoms = 0.0000

6.1258 (0.0105) x + 10.6803 (0.0361) y + 4.0595 (0.0680) z = 11.1638 (0.0232)

Angle to previous plane (with approximate e.s.d.) = 71.99 (0.22)

* 0.0000 (0.0000) S1 * 0.0000 (0.0000) C1 * 0.0000 (0.0000) S2

Rms deviation of fitted atoms = 0.0000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0803 (3)0.92906 (17)0.18456 (13)0.0266 (6)
C20.1428 (3)0.87247 (17)0.23435 (13)0.0275 (6)
C30.0518 (4)0.7694 (2)0.20201 (15)0.0402 (8)
H3A0.03280.71930.17690.048*
H3B0.08640.81420.17410.048*
C40.1802 (6)0.7523 (4)0.2484 (2)0.0905 (19)
H4A0.14280.71080.27790.136*
H4B0.27500.73150.22720.136*
H4C0.20660.80330.27030.136*
C50.1951 (5)0.7249 (2)0.25762 (18)0.0510 (9)
H5A0.13890.67200.25060.061*
H5B0.20930.73190.30260.061*
C60.3555 (7)0.7219 (3)0.2270 (2)0.0891 (19)
H6A0.34180.71340.18260.134*
H6B0.41760.67620.24430.134*
H6C0.41160.77410.23410.134*
C70.2630 (4)0.8720 (2)0.33875 (14)0.0381 (8)
H7A0.33310.91000.36190.046*
H7B0.31570.81740.33690.046*
C80.1063 (5)0.8636 (2)0.37214 (16)0.0456 (8)
H8A0.04820.91600.36980.068*
H8B0.12600.84960.41540.068*
H8C0.04320.81980.35290.068*
C90.3319 (4)0.98111 (19)0.26184 (16)0.0378 (7)
H9A0.31471.02170.29530.045*
H9B0.29301.00580.22300.045*
C100.5082 (5)0.9627 (3)0.2561 (2)0.0628 (11)
H10A0.54880.94300.29580.094*
H10B0.56491.01310.24420.094*
H10C0.52470.92010.22480.094*
C110.1161 (3)0.98670 (17)0.06450 (13)0.0274 (6)
H11A0.15001.03910.08410.033*
H11B0.17940.98030.02640.033*
C120.0572 (3)0.99655 (17)0.04567 (12)0.0258 (6)
C130.3217 (4)0.9369 (2)0.04633 (17)0.0427 (8)
H13A0.37860.93350.00650.051*
H13B0.34640.99110.06520.051*
C140.3781 (5)0.8689 (3)0.0880 (2)0.0585 (11)
H14A0.36070.81540.06800.088*
H14B0.49170.87610.09640.088*
H14C0.31870.87080.12680.088*
C150.0855 (4)0.85068 (19)0.01460 (15)0.0334 (7)
H15A0.10610.80830.04650.040*
H15B0.03090.85510.00900.040*
C160.1614 (5)0.8243 (2)0.04533 (17)0.0479 (9)
H16A0.27540.81540.03900.072*
H16B0.11230.77280.05950.072*
H16C0.14570.86750.07630.072*
C170.2247 (5)1.0945 (3)0.01183 (18)0.0527 (10)
H17A0.23481.15540.01400.063*
H17B0.32971.07190.00010.063*
C180.1813 (5)1.0624 (3)0.07407 (18)0.0593 (11)
H18A0.06801.07200.08160.089*
H18B0.24401.09120.10550.089*
H18C0.20351.00310.07600.089*
C190.0413 (5)1.1461 (2)0.06844 (18)0.0482 (9)
H19A0.01341.12780.10640.058*
H19B0.12961.18300.08070.058*
C200.0738 (6)1.1938 (2)0.0293 (2)0.0675 (13)
H20A0.16091.15740.01660.101*
H20B0.11651.24020.05300.101*
H20C0.01881.21480.00730.101*
N10.0976 (3)0.79387 (15)0.23329 (12)0.0338 (6)
N20.2405 (3)0.90405 (16)0.27537 (11)0.0304 (5)
N30.1489 (3)0.93085 (14)0.03540 (12)0.0282 (5)
N40.1076 (3)1.07317 (15)0.03665 (13)0.0372 (7)
O10.6764 (4)0.61374 (17)0.34864 (12)0.0564 (7)
O20.4000 (4)0.6153 (3)0.35918 (17)0.0945 (12)
O30.5508 (5)0.73360 (19)0.37979 (16)0.0918 (12)
O40.5645 (4)0.6189 (2)0.44602 (13)0.0710 (9)
O50.6992 (4)0.53757 (17)0.07763 (13)0.0663 (9)
O60.9442 (4)0.58632 (19)0.11349 (17)0.0749 (9)
O70.7235 (4)0.6719 (2)0.11376 (18)0.0878 (11)
O80.8378 (4)0.6359 (2)0.02204 (14)0.0705 (9)
Cl10.54701 (11)0.64601 (6)0.38326 (4)0.0490 (2)
Cl20.80215 (10)0.60677 (5)0.08213 (4)0.0389 (2)
S10.16983 (8)0.90400 (4)0.11539 (3)0.02782 (16)
S20.05125 (11)0.99911 (6)0.19878 (4)0.0407 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (15)0.0247 (14)0.0283 (14)0.0014 (11)0.0026 (12)0.0001 (12)
C20.0311 (15)0.0273 (14)0.0242 (14)0.0008 (12)0.0004 (12)0.0014 (12)
C30.0454 (19)0.0397 (17)0.0354 (17)0.0164 (16)0.0078 (15)0.0043 (15)
C40.072 (3)0.147 (5)0.053 (3)0.055 (4)0.005 (3)0.008 (3)
C50.078 (3)0.0277 (16)0.047 (2)0.0047 (18)0.012 (2)0.0011 (15)
C60.121 (5)0.085 (3)0.061 (3)0.061 (3)0.021 (3)0.016 (3)
C70.0467 (19)0.0410 (18)0.0266 (15)0.0019 (15)0.0076 (14)0.0004 (14)
C80.060 (2)0.0443 (19)0.0328 (18)0.0042 (17)0.0051 (16)0.0030 (16)
C90.0430 (18)0.0341 (16)0.0362 (17)0.0109 (15)0.0032 (15)0.0036 (14)
C100.046 (2)0.083 (3)0.059 (3)0.014 (2)0.0002 (19)0.000 (2)
C110.0263 (14)0.0280 (14)0.0279 (15)0.0055 (11)0.0043 (11)0.0046 (12)
C120.0285 (14)0.0261 (13)0.0228 (13)0.0040 (12)0.0070 (12)0.0036 (12)
C130.0271 (16)0.052 (2)0.049 (2)0.0059 (15)0.0021 (15)0.0039 (17)
C140.0356 (19)0.075 (3)0.065 (3)0.0094 (19)0.0131 (19)0.005 (2)
C150.0310 (16)0.0314 (16)0.0377 (16)0.0018 (13)0.0020 (13)0.0010 (13)
C160.050 (2)0.048 (2)0.046 (2)0.0013 (18)0.0098 (18)0.0121 (17)
C170.048 (2)0.052 (2)0.058 (2)0.0180 (19)0.0010 (18)0.0167 (19)
C180.047 (2)0.083 (3)0.047 (2)0.017 (2)0.0052 (19)0.021 (2)
C190.065 (2)0.0273 (16)0.052 (2)0.0037 (17)0.012 (2)0.0016 (16)
C200.097 (4)0.036 (2)0.069 (3)0.011 (2)0.008 (3)0.0147 (19)
N10.0466 (16)0.0240 (12)0.0306 (14)0.0041 (11)0.0069 (12)0.0060 (11)
N20.0334 (13)0.0315 (13)0.0263 (12)0.0000 (11)0.0033 (10)0.0040 (11)
N30.0217 (12)0.0288 (12)0.0342 (13)0.0015 (10)0.0012 (10)0.0016 (11)
N40.0410 (15)0.0299 (13)0.0407 (16)0.0100 (12)0.0044 (13)0.0078 (12)
O10.0625 (17)0.0525 (15)0.0543 (16)0.0216 (14)0.0191 (14)0.0003 (13)
O20.0563 (19)0.143 (3)0.084 (2)0.002 (2)0.0089 (17)0.042 (2)
O30.143 (3)0.0545 (17)0.078 (2)0.049 (2)0.012 (3)0.0031 (17)
O40.0634 (19)0.102 (2)0.0473 (16)0.0145 (18)0.0108 (14)0.0237 (17)
O50.093 (2)0.0591 (16)0.0472 (15)0.0381 (17)0.0234 (16)0.0195 (13)
O60.0643 (19)0.0660 (17)0.094 (2)0.0070 (16)0.0421 (19)0.0015 (18)
O70.066 (2)0.096 (2)0.102 (3)0.0200 (18)0.016 (2)0.057 (2)
O80.071 (2)0.086 (2)0.0544 (16)0.0347 (18)0.0061 (15)0.0210 (16)
Cl10.0517 (5)0.0519 (5)0.0434 (5)0.0224 (4)0.0125 (4)0.0125 (4)
Cl20.0420 (4)0.0345 (4)0.0402 (4)0.0056 (3)0.0080 (3)0.0004 (3)
S10.0269 (3)0.0302 (3)0.0263 (3)0.0038 (3)0.0007 (3)0.0006 (3)
S20.0430 (5)0.0411 (4)0.0380 (4)0.0119 (4)0.0069 (4)0.0016 (4)
Geometric parameters (Å, º) top
C1—C21.512 (4)C12—N31.333 (4)
C1—S21.615 (3)C13—N31.476 (4)
C1—S11.729 (3)C13—C141.503 (5)
C2—N21.316 (4)C13—H13A0.9900
C2—N11.328 (4)C13—H13B0.9900
C3—N11.483 (4)C14—H14A0.9800
C3—C41.504 (6)C14—H14B0.9800
C3—H3A0.9900C14—H14C0.9800
C3—H3B0.9900C15—N31.474 (4)
C4—H4A0.9800C15—C161.512 (5)
C4—H4B0.9800C15—H15A0.9900
C4—H4C0.9800C15—H15B0.9900
C5—N11.483 (4)C16—H16A0.9800
C5—C61.506 (7)C16—H16B0.9800
C5—H5A0.9900C16—H16C0.9800
C5—H5B0.9900C17—N41.483 (5)
C6—H6A0.9800C17—C181.494 (5)
C6—H6B0.9800C17—H17A0.9900
C6—H6C0.9800C17—H17B0.9900
C7—N21.483 (4)C18—H18A0.9800
C7—C81.511 (5)C18—H18B0.9800
C7—H7A0.9900C18—H18C0.9800
C7—H7B0.9900C19—N41.477 (4)
C8—H8A0.9800C19—C201.503 (5)
C8—H8B0.9800C19—H19A0.9900
C8—H8C0.9800C19—H19B0.9900
C9—N21.495 (4)C20—H20A0.9800
C9—C101.518 (5)C20—H20B0.9800
C9—H9A0.9900C20—H20C0.9800
C9—H9B0.9900Cl1—O31.420 (3)
C10—H10A0.9800Cl1—O11.423 (3)
C10—H10B0.9800Cl1—O21.432 (4)
C10—H10C0.9800Cl1—O41.439 (3)
C11—C121.523 (4)Cl2—O61.415 (3)
C11—S11.794 (3)Cl2—O51.420 (3)
C11—H11A0.9900Cl2—O81.420 (3)
C11—H11B0.9900Cl2—O71.422 (3)
C12—N41.326 (4)
C2—C1—S2121.8 (2)H13A—C13—H13B108.0
C2—C1—S1109.1 (2)C13—C14—H14A109.5
S2—C1—S1129.03 (18)C13—C14—H14B109.5
N2—C2—N1124.3 (3)H14A—C14—H14B109.5
N2—C2—C1117.8 (2)C13—C14—H14C109.5
N1—C2—C1117.9 (3)H14A—C14—H14C109.5
N1—C3—C4110.6 (3)H14B—C14—H14C109.5
N1—C3—H3A109.5N3—C15—C16111.1 (3)
C4—C3—H3A109.5N3—C15—H15A109.4
N1—C3—H3B109.5C16—C15—H15A109.4
C4—C3—H3B109.5N3—C15—H15B109.4
H3A—C3—H3B108.1C16—C15—H15B109.4
C3—C4—H4A109.5H15A—C15—H15B108.0
C3—C4—H4B109.5C15—C16—H16A109.5
H4A—C4—H4B109.5C15—C16—H16B109.5
C3—C4—H4C109.5H16A—C16—H16B109.5
H4A—C4—H4C109.5C15—C16—H16C109.5
H4B—C4—H4C109.5H16A—C16—H16C109.5
N1—C5—C6111.3 (3)H16B—C16—H16C109.5
N1—C5—H5A109.4N4—C17—C18113.5 (3)
C6—C5—H5A109.4N4—C17—H17A108.9
N1—C5—H5B109.4C18—C17—H17A108.9
C6—C5—H5B109.4N4—C17—H17B108.9
H5A—C5—H5B108.0C18—C17—H17B108.9
C5—C6—H6A109.5H17A—C17—H17B107.7
C5—C6—H6B109.5C17—C18—H18A109.5
H6A—C6—H6B109.5C17—C18—H18B109.5
C5—C6—H6C109.5H18A—C18—H18B109.5
H6A—C6—H6C109.5C17—C18—H18C109.5
H6B—C6—H6C109.5H18A—C18—H18C109.5
N2—C7—C8111.4 (3)H18B—C18—H18C109.5
N2—C7—H7A109.3N4—C19—C20112.9 (3)
C8—C7—H7A109.3N4—C19—H19A109.0
N2—C7—H7B109.3C20—C19—H19A109.0
C8—C7—H7B109.3N4—C19—H19B109.0
H7A—C7—H7B108.0C20—C19—H19B109.0
C7—C8—H8A109.5H19A—C19—H19B107.8
C7—C8—H8B109.5C19—C20—H20A109.5
H8A—C8—H8B109.5C19—C20—H20B109.5
C7—C8—H8C109.5H20A—C20—H20B109.5
H8A—C8—H8C109.5C19—C20—H20C109.5
H8B—C8—H8C109.5H20A—C20—H20C109.5
N2—C9—C10110.8 (3)H20B—C20—H20C109.5
N2—C9—H9A109.5O3—Cl1—O1108.8 (2)
C10—C9—H9A109.5O3—Cl1—O2110.2 (3)
N2—C9—H9B109.5O1—Cl1—O2109.9 (2)
C10—C9—H9B109.5O3—Cl1—O4110.6 (2)
H9A—C9—H9B108.1O1—Cl1—O4108.10 (18)
C9—C10—H10A109.5O2—Cl1—O4109.2 (2)
C9—C10—H10B109.5O6—Cl2—O5111.35 (18)
H10A—C10—H10B109.5O6—Cl2—O8110.0 (2)
C9—C10—H10C109.5O5—Cl2—O8109.14 (17)
H10A—C10—H10C109.5O6—Cl2—O7109.5 (2)
H10B—C10—H10C109.5O5—Cl2—O7109.5 (2)
C12—C11—S1119.01 (19)O8—Cl2—O7107.2 (2)
C12—C11—H11A107.6C2—N1—C5123.8 (3)
S1—C11—H11A107.6C2—N1—C3120.5 (3)
C12—C11—H11B107.6C5—N1—C3115.5 (3)
S1—C11—H11B107.6C2—N2—C7124.9 (3)
H11A—C11—H11B107.0C2—N2—C9120.8 (3)
N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)
N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)
N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)
N3—C13—C14111.1 (3)C15—N3—C13117.7 (2)
N3—C13—H13A109.4C12—N4—C19123.9 (3)
C14—C13—H13A109.4C12—N4—C17122.4 (3)
N3—C13—H13B109.4C19—N4—C17113.4 (3)
C14—C13—H13B109.4C1—S1—C11104.50 (14)
S2—C1—C2—N273.0 (3)C10—C9—N2—C772.0 (4)
S1—C1—C2—N2107.7 (3)N4—C12—N3—C15148.3 (3)
S2—C1—C2—N1108.1 (3)C11—C12—N3—C1527.5 (4)
S1—C1—C2—N171.2 (3)N4—C12—N3—C1333.0 (4)
S1—C11—C12—N4146.7 (2)C11—C12—N3—C13151.1 (3)
S1—C11—C12—N337.2 (4)C16—C15—N3—C12122.3 (3)
N2—C2—N1—C527.7 (5)C16—C15—N3—C1359.0 (4)
C1—C2—N1—C5151.2 (3)C14—C13—N3—C12127.1 (3)
N2—C2—N1—C3157.5 (3)C14—C13—N3—C1551.6 (4)
C1—C2—N1—C323.6 (4)N3—C12—N4—C19155.1 (3)
C6—C5—N1—C257.2 (5)C11—C12—N4—C1928.8 (4)
C6—C5—N1—C3117.8 (4)N3—C12—N4—C1731.9 (4)
C4—C3—N1—C2103.8 (4)C11—C12—N4—C17144.2 (3)
C4—C3—N1—C581.1 (5)C20—C19—N4—C12100.6 (4)
N1—C2—N2—C726.8 (5)C20—C19—N4—C1772.9 (4)
C1—C2—N2—C7154.3 (3)C18—C17—N4—C1251.3 (5)
N1—C2—N2—C9157.3 (3)C18—C17—N4—C19122.4 (4)
C1—C2—N2—C921.6 (4)C2—C1—S1—C11169.24 (19)
C8—C7—N2—C252.6 (4)S2—C1—S1—C1111.5 (3)
C8—C7—N2—C9123.5 (3)C12—C11—S1—C167.1 (3)
C10—C9—N2—C2111.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···S1i0.982.913.893 (4)177
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···S1i0.982.91383.8925 (38)176.69
Symmetry code: (i) x1, y, z.
Acknowledgements top

This work was supported by a Grant-in-Aid for Scientific Research(C) (11005897 to T.F.) from the Japan Society for the Promotion of Science (JSPS).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.

Banerjee, S. R., Nagasawa, A. & Zubieta, J. (2002). Inorg. Chim. Acta, 340, 155–162.

Banerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208–m209.

Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Fujihara, T., Ohba, T., Nagasawa, A., Nakayama, J. & Yoza, K. (2002). Acta Cryst. C58, o558–o559.

Fujihara, T., Sugaya, T., Nagasawa, A. & Nakayama, J. (2004). Acta Cryst. E60, m282–m284.

Miller, G. P., Jeon, I., Faix, A. N., Jainski, J. P., Arhans, A. J. & Tetreau, M. C. (2000). J. Chem. Soc., Perkin Trans. 2, pp. 1777–1780.

Miyashita, I., Matsumoto, K., Kobayashi, M., Nagasawa, A. & Nakayama, J. (1998). Inorg. Chim. Acta, 283, 256–259.

Nagasawa, A., Akiyama, I., Mashima, S. & Nakayama, J. (1995). Heteroat. Chem. 6, 45–49.

Nakayama, J. (2000). CACS Forum, 20, 7–20.

Nakayama, J. (2002). J. Synth. Org. Chem. Jpn, 60, 106–114.

Nakayama, J. & Akiyama, I. (1992). J. Chem. Soc. Chem. Commun. p. 1522.

Nakayama, J., Kitahara, T., Sugihara, Y., Sakamoto, A. & Ishii, A. (2000). J. Am. Chem. Soc. 122, 9120–9126.

Nakayama, J., Otani, T., Sugihara, Y. & Ishii, A. (1997). Tetrahedron Lett. 38, 5013–5016.

Otani, T., Sugihara, Y., Ishii, A. & Nakayama, J. (1998). Heteroat. Chem. 9, 703–707.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemeling, U., Memczak, H., Bruhn, C., Vogel, F., Träger, F., Baiod, E. J. & Weidner, T. (2012). Dalton Trans. 41, 2986–2994.

Sugaya, T., Fujihara, T., Nagasawa, A. & Unoura, K. (2009). Inorg. Chim. Acta, 362, 4813–4822.

Winberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 45, 2776–2777.