metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1153-m1154

[μ-N,N′-Bis(2-amino­eth­yl)ethane-1,2-di­amine-κ4N1,N1′:N2,N2′]bis­­{[N,N′-bis­­(2-amino­eth­yl)ethane-1,2-di­amine-κ4N,N′,N′′,N′′′]cadmium} tetra­kis­(perchlorate)

aFaculty of Science, Department of Chemistry, Ilam University, Ilam, Iran, bDepartment of Solid State Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic, and cInstitute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: hamid_gafshar@yahoo.com

(Received 21 July 2012; accepted 28 July 2012; online 4 August 2012)

The centrosymmetric dinuclear cadmium title complex, [Cd2(C6H18N4)3](ClO4)4, was obtained by the reaction of N,N′-bis­(2-amino­eth­yl)ethane-1,2-diamine (trien) with Cd(NO3)2·4H2O and sodium perchlorate in methanol. The CdII cation is coordinated by four N atoms of a non-bridging trien ligand and by two N atoms of a bridging trien ligand in a slightly distorted octa­hedral coordination geometry. The bridging ligand shares another two N atoms with a neighboring symmetry-equivalent CdII cation. The structure displays C—H⋯O and N—H⋯O hydrogen bonding. The perchlorate anion is disordered over two sets of sites in a 0.854 (7): 0.146 (7) ratio.

Related literature

Polyamines are an important class of N-donor ligands, particularly for transition metals, see: Patel et al. (2007[Patel, R. N., Singh, N., Patel, D. K. & Gundla, V. L. N. (2007). Indian J. Chem. Sect. A, 46, 422-427.]); Blackman (2005[Blackman, A. G. (2005). Polyhedron, 24, 1-39.]). For polynuclear complexes, see: Gustafsson et al. (2010[Gustafsson, M., Fischer, A., Ilyukhin, A., Maliarik, M. & Nordblad, P. (2010). Inorg. Chem. 49, 5359-5361.]); Ambrosi et al. (2009[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2009). Inorg. Chem. 48, 10424-01434.]); You et al. (2011[You, Z. L., Wang, X. L., Zhang, J. C., Wang, C. & Zhou, X. S. (2011). Struct. Chem. 22, 1297-1302.]). For polynuclear complexes of cadmium, see: Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); For background to the use of the trien ligand in complexation, see: Cai et al. (2001a[Cai, J., Hu, X., Feng, X., Ji, L. & Bernal, I. (2001a). Acta Cryst. B57, 45-53.],b[Cai, J., Hu, X., Yao, J. & Ji, L. (2001b). Inorg. Chem. Commun. 4, 478-482.]); Buckingham et al. (1974[Buckingham, D. A., Cresswell, P. J., Dellaca, R. J., Dwyer, M., Gainford, G. J., Marzilli, L. G., Maxwell, I. E., Robinson, W. T., Sargeson, A. M. & Turnbull, K. R. (1974). J. Am. Chem. Soc. 96, 1713-1725.], 1975[Buckingham, D. A., Dwyer, M., Gainsford, G. J., Ho, V. J., Marzilli, L. G., Robinson, W. T., Sargeson, A. M. & Turnbull, K. B. (1975). Inorg. Chem. 14, 1739-1752.]); Chowdhury et al. (2007[Chowdhury, H., Ghosh, R., Rahaman, Sk. H. & Ghosh, B. K., (2007). Polyhedron, 26, 5023-5029.]). Buckingham & Jones (1965[Buckingham, D. A. & Jones, D. (1965). Inorg. Chem. 4, 1387-1392.]); Shinohara et al. (1991[Shinohara, N., Matsufuji, S. & Okubo, W. (1991). Polyhedron, 10, 107-112.]); He (2009[He, X. (2009). Acta Cryst. E65, m205.]); Patel et al. (2008[Patel, R. N., Kesharwani, M. K., Singh, A., Patel, D. K. & Choudhary, M. (2008). Transition Met. Chem. 33, 733-738.]); Anderson et al. (1977[Anderson, B. F., Bell, J. D., Buckingham, D. A., Cresswell, P. J., Gainsford, G. J., Marzilli, L. G., Robertson, G. B. & Sargeson, A. M. (1977). Inorg. Chem. 16, 3233-3244.]); Shoukry et al. (1998[Shoukry, M. M., Shehata, M. R. & Mohamed, M. M. A. (1998). Mikrochim. Acta, 129, 107-113.]); Hu et al. (2000[Hu, X., Cai, J., Feng, X. & Ji, L. (2000). J. Chem. Crystallogr. 30, 27-34.]). For dinuclear Cd complexes, see: Das et al. (2010[Das, S., Bhar, K., Fun, H. K., Chantrapromma, S. & Ghosh, B. K. (2010). Inorg. Chim. Acta, 363, 784-792.]); Nie et al. (2010[Nie, F. M., Li, M., Li, G. X., Li, Z. & Li, W. (2010). Inorg. Chim. Acta, 363, 3351-3358.]); Wang et al. (2011[Wang, J., Xu, X.-J. & Tao, J.-Q. (2011). Acta Cryst. C67, m137-m139.]); Sun et al. (2010[Sun, S.-J., Deng, J.-H. & Liu, T.-L. (2010). Acta Cryst. E66, m981-m982.]). For details of the preparation, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C6H18N4)3](ClO4)4

  • Mr = 1061.3

  • Monoclinic, P 21 /n

  • a = 8.8056 (2) Å

  • b = 15.0259 (3) Å

  • c = 14.7516 (3) Å

  • β = 95.4420 (17)°

  • V = 1943.02 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 120 K

  • 0.70 × 0.51 × 0.33 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.509, Tmax = 0.738

  • 31295 measured reflections

  • 4952 independent reflections

  • 4373 reflections with I > 3σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.106

  • S = 2.02

  • 4952 reflections

  • 269 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.362 (2)
Cd1—N4 2.390 (3)
Cd1—N7 2.377 (3)
Cd1—N10 2.380 (3)
Cd1—N11 2.374 (3)
Cd1—N14 2.375 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H1c5⋯O4ci 0.96 2.49 3.449 (3) 172
N1—H2n1⋯O3cii 0.80 (4) 2.46 (4) 3.149 (4) 145 (3)
N11—H1n11⋯O2ciii 0.82 (4) 2.40 (4) 3.140 (4) 149 (3)
N11—H2n11⋯O4aii 0.92 (4) 2.44 (4) 3.210 (5) 141 (3)
N4—H1n4⋯O4aii 0.98 (3) 2.36 (3) 3.271 (4) 154 (2)
N4—H1n4⋯O5aii 0.98 (3) 2.38 (3) 3.236 (4) 145 (2)
N4—H1n4⋯O5bii 0.98 (3) 2.22 (3) 3.113 (13) 151 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Polyamines are an important class of N donor ligands, particularly for the transition metals (Patel et al., 2007, 2008; Blackman, 2005). Considerable attention has been focused on the polynuclear complexes containing bridging ligands because of their interesting molecular topologies, as well as the fact that they may be designed with specific functionalities (Gustafsson et al. 2010;. Ambrosi et al. 2009; You et al. 2011). The investigation of polynuclear complexes of cadmium(II) is an important objective in view of their electronic and optoelectronic properties (Evans et al. 2002; Chowdhury et al. 2007).

The molecular structure of the title complex is shown in Fig. 1. The cadmium(II) centers are six-coordinate by four nitrogen atoms of the non-bridging tetradentate (trien) ligand and two nitrogen atoms of the bridging trien ligand, with a substantial departure from an ideal octahedral geometry [cisoid angles: 73.97 (8)–114.67 (9)°; transoid angles: 141.95 (1)–159.20 (6)°] (Table 1). The distance between the two cadmium(II) centers of the dinuclear complex is 7.735 Å, which is longer than the corresponding distance in dinickel(II) complex (7.497 Å) of the same ligand (Cai et al. 2001b) due to larger radius of cadmium. Cadmium atoms in the dinuclear complex are related by a 2 fold symmetry operation. Bond distance of Cd—N(trien) are in the range of 2.62 (3)- 2.90 (3) Å (Table 1). The structure exhibits disorder of one of the perchlorate anions in two positions with refined occupancy 0.854 (7) and 0.146 (7) for the major and minor componet,respectively. The disorder was described using the rigid body approach. In the title complex the C—H···O and N—H···O hydrogen bonds have been found between the amine nitrogen/carbon donors and perchlorate acceptors (Fig.2),(Table 2).

Related literature top

Polyamines are an important class of N-donor ligands, particularly for transition metals, see: Patel et al. (2007); Blackman (2005). For polynuclear complexes, see: Gustafsson et al. (2010); Ambrosi et al. (2009); You et al. (2011). For polynuclear complexes of cadmium(II), see: Evans & Lin (2002); For background to the use of the trien ligand in complexation, see: Cai et al. (2001a,b); Buckingham et al. (1974, 1975); Chowdhury et al. (2007). Buckingham & Jones (1965); Shinohara et al. (1991); He (2009); Patel et al. (2008); Anderson et al. (1977); Shoukry et al. (1998); Hu et al. (2000). For related structures, see: Cai et al. (2001a,b). For dinuclear Cd complexes, see: Das et al. (2010); Nie et al. (2010); Wang et al. (2011); Sun et al. (2010). For details of the preparation, see: Harrowfield et al. (1996).

Experimental top

N,N'-bis(2-aminoethyl)ethane-1,2-diamine (0.45 g, 3 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of Cd(NO3)2.4H2O (0.616 g, 2 mmol) and sodium perchlorate (0.488 g, 4 mmol) in the other. Methanol was then carefully added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After one week, colorless crystals were collected in the cooler arm. Then they were filtered off, washed with acetone and diethylether, and air dried. Yield: (53%).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å while positions of other H atoms were refined freely. In both cases Uiso(H) was set to 1.2Ueq(C,N). Disorder of perchlorate anion was refined using rigid body refinement, with occupancy ratio 0.85:0.15.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petricek et al., 2006); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Unit-cell packing diagram of the title compound viewed along the crystallographic a axis. Hydrogen bonds are indicated by dashed lines; (orange = cadmium; green = chlorine; violet = nitrogen; grey = carbon; light-grey = hydrogen).
[µ-N,N'-Bis(2-aminoethyl)ethane-1,2-diamine- κ4N1,N1':N2,N2']bis{[N,N'- bis(2-aminoethyl)ethane-1,2-diamine- κ4N,N',N'',N''']cadmium} tetrakis(perchlorate) top
Crystal data top
[Cd2(C6H18N4)3](ClO4)4F(000) = 1076
Mr = 1061.3Dx = 1.814 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 17686 reflections
a = 8.8056 (2) Åθ = 2.9–29.3°
b = 15.0259 (3) ŵ = 1.45 mm1
c = 14.7516 (3) ÅT = 120 K
β = 95.4420 (17)°Prism, colourless
V = 1943.02 (7) Å30.70 × 0.51 × 0.33 mm
Z = 2
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
4952 independent reflections
Radiation source: Enhance (Mo) X-ray Source4373 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.3784 pixels mm-1θmax = 29.4°, θmin = 2.9°
ω scansh = 1112
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
k = 1920
Tmin = 0.509, Tmax = 0.738l = 2019
31295 measured reflections
Refinement top
Refinement on F282 constraints
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 2.02(Δ/σ)max = 0.045
4952 reflectionsΔρmax = 1.13 e Å3
269 parametersΔρmin = 0.92 e Å3
0 restraints
Crystal data top
[Cd2(C6H18N4)3](ClO4)4V = 1943.02 (7) Å3
Mr = 1061.3Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.8056 (2) ŵ = 1.45 mm1
b = 15.0259 (3) ÅT = 120 K
c = 14.7516 (3) Å0.70 × 0.51 × 0.33 mm
β = 95.4420 (17)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
4952 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
4373 reflections with I > 3σ(I)
Tmin = 0.509, Tmax = 0.738Rint = 0.022
31295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 2.02Δρmax = 1.13 e Å3
4952 reflectionsΔρmin = 0.92 e Å3
269 parameters
Special details top

Experimental. Absorption correction: analytical: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 Analytical numeric absorption correction based on crystal shape

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.286722 (18)0.787742 (11)0.064763 (11)0.01848 (7)
N10.5386 (3)0.73266 (16)0.08829 (18)0.0272 (7)
C20.5399 (3)0.63634 (18)0.0671 (2)0.0292 (8)
C30.4054 (3)0.59042 (17)0.10338 (19)0.0283 (8)
N40.2615 (2)0.62928 (15)0.06265 (14)0.0228 (6)
C50.1244 (3)0.60375 (18)0.10733 (18)0.0300 (8)
C60.0058 (3)0.6674 (2)0.08095 (19)0.0319 (9)
N70.0352 (3)0.76022 (18)0.10385 (16)0.0277 (7)
C80.0284 (3)0.78350 (18)0.1997 (2)0.0330 (9)
C90.1157 (3)0.8669 (2)0.22447 (19)0.0354 (9)
N100.2773 (3)0.85403 (16)0.21066 (15)0.0286 (7)
N110.2454 (3)0.77849 (15)0.09631 (18)0.0296 (7)
C120.2788 (3)0.86355 (17)0.14108 (17)0.0274 (8)
C130.2345 (3)0.94099 (17)0.08204 (17)0.0231 (7)
N140.3148 (2)0.93478 (13)0.00986 (14)0.0183 (6)
C150.4798 (3)0.95387 (15)0.01611 (16)0.0200 (7)
H1c20.6329770.6103360.0941870.035*
H2c20.5352460.6282410.0023520.035*
H1c30.4078280.5281280.0891180.034*
H2c30.4117840.5969780.1683670.034*
H1c50.1478320.6046080.1722190.036*
H2c50.0943480.5444110.0893980.036*
H1c60.0351840.6627060.0167750.0383*
H2c60.0931230.6505240.1113220.0383*
H1c80.0689710.7354360.23740.0396*
H2c80.0761020.7912290.2115360.0396*
H1c90.1066230.8810330.2871720.0424*
H2c90.0749140.9149720.186880.0424*
H1c120.2211030.8667190.1995790.0329*
H2c120.3857360.8667770.148550.0329*
H1c130.2602420.9961640.1096230.0277*
H2c130.1263850.9400480.077910.0277*
H1c150.5300280.9098670.0175820.024*
H2c150.5230230.9454120.0777240.024*
H1n100.331 (4)0.819 (2)0.267 (2)0.0344*
H2n100.340 (4)0.909 (2)0.227 (2)0.0344*
H1n10.574 (4)0.746 (2)0.148 (2)0.0326*
H1n70.025 (5)0.793 (2)0.079 (3)0.0332*
H1n140.278 (3)0.964 (2)0.037 (2)0.0219*
H2n10.604 (4)0.753 (3)0.061 (2)0.0326*
H1n110.153 (5)0.768 (2)0.104 (3)0.0355*
H2n110.285 (4)0.736 (3)0.133 (3)0.0355*
H1n40.241 (3)0.610 (2)0.001 (2)0.0274*
Cl1c0.20589 (7)0.15386 (4)0.11243 (4)0.03020 (19)
O2c0.0975 (3)0.18921 (16)0.16787 (16)0.0431 (7)
O3c0.3065 (3)0.22454 (16)0.0906 (2)0.0500 (9)
O4c0.2906 (3)0.08460 (15)0.16043 (15)0.0451 (8)
O5c0.1347 (3)0.11760 (15)0.03083 (15)0.0456 (7)
Cl1a0.8393 (2)0.42448 (12)0.19271 (14)0.0246 (3)0.854 (7)
O2a0.8867 (6)0.5086 (2)0.2242 (3)0.0768 (18)0.854 (7)
O3a0.8423 (5)0.3641 (3)0.2674 (3)0.0378 (8)0.854 (7)
O4a0.6891 (4)0.4247 (3)0.1474 (3)0.0468 (11)0.854 (7)
O5a0.9442 (5)0.3933 (3)0.1297 (3)0.0388 (9)0.854 (7)
Cl1b0.8447 (14)0.4319 (9)0.2081 (8)0.0246 (3)0.146 (7)
O2b0.9407 (15)0.4949 (9)0.2534 (9)0.0768 (18)0.146 (7)
O3b0.8281 (14)0.3574 (9)0.2662 (9)0.0378 (8)0.146 (7)
O4b0.6967 (14)0.4661 (9)0.1803 (9)0.0468 (11)0.146 (7)
O5b0.9136 (14)0.4022 (9)0.1280 (9)0.0388 (9)0.146 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01761 (13)0.01696 (13)0.02150 (13)0.00220 (5)0.00519 (8)0.00130 (5)
N10.0215 (11)0.0231 (11)0.0368 (13)0.0034 (9)0.0021 (10)0.0032 (10)
C20.0242 (13)0.0229 (12)0.0407 (15)0.0027 (10)0.0053 (11)0.0014 (11)
C30.0302 (14)0.0206 (12)0.0338 (14)0.0002 (10)0.0015 (11)0.0043 (10)
N40.0252 (10)0.0207 (11)0.0227 (11)0.0071 (8)0.0028 (8)0.0030 (8)
C50.0324 (14)0.0275 (13)0.0306 (14)0.0112 (11)0.0050 (11)0.0044 (11)
C60.0200 (13)0.0419 (17)0.0339 (14)0.0112 (11)0.0023 (10)0.0042 (12)
N70.0187 (11)0.0357 (13)0.0289 (12)0.0004 (9)0.0041 (9)0.0065 (10)
C80.0249 (14)0.0429 (17)0.0329 (15)0.0045 (11)0.0116 (12)0.0036 (11)
C90.0357 (15)0.0384 (16)0.0336 (15)0.0088 (12)0.0118 (12)0.0014 (12)
N100.0310 (12)0.0322 (12)0.0231 (11)0.0017 (10)0.0047 (9)0.0011 (9)
N110.0434 (15)0.0194 (11)0.0265 (12)0.0092 (10)0.0066 (11)0.0021 (9)
C120.0395 (15)0.0222 (12)0.0200 (11)0.0088 (11)0.0001 (10)0.0006 (10)
C130.0214 (11)0.0208 (12)0.0263 (12)0.0018 (9)0.0014 (9)0.0026 (9)
N140.0182 (10)0.0148 (9)0.0224 (10)0.0017 (7)0.0045 (8)0.0016 (7)
C150.0189 (11)0.0173 (11)0.0234 (12)0.0026 (9)0.0001 (9)0.0023 (9)
Cl1c0.0298 (3)0.0308 (3)0.0297 (3)0.0041 (2)0.0011 (3)0.0042 (2)
O2c0.0390 (12)0.0416 (11)0.0498 (14)0.0074 (10)0.0101 (10)0.0168 (11)
O3c0.0589 (17)0.0402 (13)0.0531 (14)0.0106 (10)0.0159 (12)0.0020 (11)
O4c0.0614 (15)0.0400 (13)0.0329 (11)0.0157 (10)0.0003 (10)0.0007 (9)
O5c0.0517 (14)0.0461 (13)0.0361 (11)0.0195 (10)0.0106 (10)0.0111 (10)
Cl1a0.0346 (4)0.0174 (5)0.0224 (8)0.0034 (3)0.0062 (4)0.0039 (4)
O2a0.140 (4)0.0407 (17)0.060 (3)0.055 (2)0.064 (3)0.0326 (18)
O3a0.0459 (16)0.0401 (14)0.0267 (10)0.0048 (11)0.0004 (10)0.0130 (10)
O4a0.0390 (14)0.066 (2)0.0348 (16)0.0216 (14)0.0008 (11)0.0038 (15)
O5a0.0396 (18)0.0376 (16)0.0420 (13)0.0078 (15)0.0184 (13)0.0130 (11)
Cl1b0.0310 (4)0.0229 (5)0.0196 (8)0.0082 (3)0.0014 (4)0.0039 (4)
O2b0.104 (4)0.098 (2)0.031 (3)0.084 (2)0.023 (2)0.0276 (19)
O3b0.0424 (15)0.0356 (14)0.0350 (11)0.0036 (11)0.0020 (10)0.0163 (10)
O4b0.0542 (15)0.049 (2)0.0374 (17)0.0258 (13)0.0073 (12)0.0057 (15)
O5b0.0368 (18)0.0497 (16)0.0314 (14)0.0109 (14)0.0112 (13)0.0133 (11)
Geometric parameters (Å, º) top
Cd1—N12.362 (2)C9—H1c90.96
Cd1—N42.390 (3)C9—H2c90.96
Cd1—N72.377 (3)N11—C121.481 (4)
Cd1—N102.380 (3)N11—H1n110.82 (4)
Cd1—N112.374 (3)N11—H2n110.92 (4)
Cd1—N142.375 (2)C12—C131.526 (4)
N1—C21.481 (4)C12—H1c120.96
N1—H1n10.93 (3)C12—H2c120.96
N1—H2n10.80 (4)C13—N141.471 (3)
C2—C31.512 (4)C13—H1c130.96
C2—H1c20.96C13—H2c130.96
C2—H2c20.96N14—C151.475 (3)
C3—N41.471 (3)N14—H1n140.70 (3)
C3—H1c30.96C15—C15i1.519 (3)
C3—H2c30.96C15—H1c150.96
N4—C51.480 (4)C15—H2c150.96
C5—C61.515 (4)Cl1c—O2c1.418 (3)
C5—H1c50.96Cl1c—O3c1.439 (3)
C5—H2c50.96Cl1c—O4c1.428 (2)
C6—N71.472 (4)Cl1c—O5c1.413 (2)
C6—H1c60.96Cl1a—O2a1.397 (4)
C6—H2c60.96Cl1a—O3a1.425 (5)
N7—C81.463 (4)Cl1a—O4a1.424 (4)
N7—H1n70.78 (4)Cl1a—O5a1.449 (5)
C8—C91.497 (4)Cl1b—O2b1.397 (18)
C8—H1c80.96Cl1b—O3b1.425 (19)
C8—H2c80.96Cl1b—O4b1.424 (17)
C9—N101.469 (4)Cl1b—O5b1.449 (19)
N11—Cd1—N1473.97 (8)C8—C9—H2c9109.47
N4—Cd1—N10114.67 (9)N10—C9—H1c9109.47
N1—Cd1—N7141.90 (9)N10—C9—H2c9109.47
N4—Cd1—N14159.20 (6)H1c9—C9—H2c9109.17
Cd1—N1—C2109.72 (16)C12—N11—H1n11110 (2)
Cd1—N1—H1n1107 (2)C12—N11—H2n11103 (2)
Cd1—N1—H2n1120 (3)H1n11—N11—H2n11102 (3)
C2—N1—H1n1114 (2)N11—C12—C13109.4 (2)
C2—N1—H2n1105 (3)N11—C12—H1c12109.47
H1n1—N1—H2n1102 (3)N11—C12—H2c12109.47
N1—C2—C3110.5 (2)C13—C12—H1c12109.47
N1—C2—H1c2109.47C13—C12—H2c12109.47
N1—C2—H2c2109.47H1c12—C12—H2c12109.59
C3—C2—H1c2109.47C12—C13—N14110.6 (2)
C3—C2—H2c2109.47C12—C13—H1c13109.47
H1c2—C2—H2c2108.47C12—C13—H2c13109.47
C2—C3—N4110.3 (2)N14—C13—H1c13109.47
C2—C3—H1c3109.47N14—C13—H2c13109.47
C2—C3—H2c3109.47H1c13—C13—H2c13108.36
N4—C3—H1c3109.47C13—N14—C15115.44 (19)
N4—C3—H2c3109.47C13—N14—H1n14106 (3)
H1c3—C3—H2c3108.58C15—N14—H1n14111 (2)
C3—N4—C5115.0 (2)N14—C15—C15i114.62 (18)
N4—C5—C6110.6 (2)N14—C15—H1c15109.47
N4—C5—H1c5109.47N14—C15—H2c15109.47
N4—C5—H2c5109.47C15i—C15—H1c15109.47
C6—C5—H1c5109.47C15i—C15—H2c15109.47
C6—C5—H2c5109.47H1c15—C15—H2c15103.78
H1c5—C5—H2c5108.35O2c—Cl1c—O3c108.37 (16)
C5—C6—N7112.1 (2)O2c—Cl1c—O4c109.59 (14)
C5—C6—H1c6109.47O2c—Cl1c—O5c111.57 (14)
C5—C6—H2c6109.47O3c—Cl1c—O4c110.20 (15)
N7—C6—H1c6109.47O3c—Cl1c—O5c109.05 (16)
N7—C6—H2c6109.47O4c—Cl1c—O5c108.05 (13)
H1c6—C6—H2c6106.74O2a—Cl1a—O3a109.7 (3)
C6—N7—C8114.6 (2)O2a—Cl1a—O4a112.9 (3)
C6—N7—H1n7110 (2)O2a—Cl1a—O5a108.5 (3)
C8—N7—H1n7102 (3)O3a—Cl1a—O4a108.2 (3)
N7—C8—C9111.7 (2)O3a—Cl1a—O5a108.9 (3)
N7—C8—H1c8109.47O4a—Cl1a—O5a108.6 (3)
N7—C8—H2c8109.47O2b—Cl1b—O3b109.7 (11)
C9—C8—H1c8109.47O2b—Cl1b—O4b112.9 (11)
C9—C8—H2c8109.47O2b—Cl1b—O5b108.5 (11)
H1c8—C8—H2c8107.19O3b—Cl1b—O4b108.2 (11)
C8—C9—N10109.8 (2)O3b—Cl1b—O5b108.9 (11)
C8—C9—H1c9109.47O4b—Cl1b—O5b108.6 (11)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H1c5···O4cii0.962.493.449 (3)172
C8—H2c8···O3bii0.962.483.412 (13)163
N10—H1n10···O2cii1.06 (3)2.24 (4)3.191 (3)149 (3)
N10—H2n10···O2biii1.01 (3)2.32 (3)3.268 (13)156 (3)
N1—H1n1···O3aiii0.93 (3)2.25 (3)3.018 (5)139 (3)
N1—H1n1···O3biii0.93 (3)2.22 (4)3.004 (13)141 (3)
N7—H1n7···O5civ0.78 (4)2.25 (4)2.999 (3)159 (4)
N1—H2n1···O3cv0.80 (4)2.46 (4)3.149 (4)145 (3)
N11—H1n11···O2civ0.82 (4)2.40 (4)3.140 (4)149 (3)
N11—H2n11···O4av0.92 (4)2.44 (4)3.210 (5)141 (3)
N4—H1n4···O4av0.98 (3)2.36 (3)3.271 (4)154 (2)
N4—H1n4···O5av0.98 (3)2.38 (3)3.236 (4)145 (2)
N4—H1n4···O5bv0.98 (3)2.22 (3)3.113 (13)151 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C6H18N4)3](ClO4)4
Mr1061.3
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)8.8056 (2), 15.0259 (3), 14.7516 (3)
β (°) 95.4420 (17)
V3)1943.02 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.70 × 0.51 × 0.33
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.509, 0.738
No. of measured, independent and
observed [I > 3σ(I)] reflections
31295, 4952, 4373
Rint0.022
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.106, 2.02
No. of reflections4952
No. of parameters269
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.13, 0.92

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petricek et al., 2006), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—N12.362 (2)Cd1—N102.380 (3)
Cd1—N42.390 (3)Cd1—N112.374 (3)
Cd1—N72.377 (3)Cd1—N142.375 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H1c5···O4ci0.962.493.449 (3)172.30
N1—H2n1···O3cii0.80 (4)2.46 (4)3.149 (4)145 (3)
N11—H1n11···O2ciii0.82 (4)2.40 (4)3.140 (4)149 (3)
N11—H2n11···O4aii0.92 (4)2.44 (4)3.210 (5)141 (3)
N4—H1n4···O4aii0.98 (3)2.36 (3)3.271 (4)154 (2)
N4—H1n4···O5aii0.98 (3)2.38 (3)3.236 (4)145 (2)
N4—H1n4···O5bii0.98 (3)2.22 (3)3.113 (13)151 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by the University of Ilam, the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences (ASCR).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2009). Inorg. Chem. 48, 10424–01434.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAnderson, B. F., Bell, J. D., Buckingham, D. A., Cresswell, P. J., Gainsford, G. J., Marzilli, L. G., Robertson, G. B. & Sargeson, A. M. (1977). Inorg. Chem. 16, 3233–3244.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlackman, A. G. (2005). Polyhedron, 24, 1–39.  Web of Science CrossRef CAS Google Scholar
First citationBuckingham, D. A., Cresswell, P. J., Dellaca, R. J., Dwyer, M., Gainford, G. J., Marzilli, L. G., Maxwell, I. E., Robinson, W. T., Sargeson, A. M. & Turnbull, K. R. (1974). J. Am. Chem. Soc. 96, 1713–1725.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuckingham, D. A., Dwyer, M., Gainsford, G. J., Ho, V. J., Marzilli, L. G., Robinson, W. T., Sargeson, A. M. & Turnbull, K. B. (1975). Inorg. Chem. 14, 1739–1752.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuckingham, D. A. & Jones, D. (1965). Inorg. Chem. 4, 1387–1392.  CrossRef CAS Web of Science Google Scholar
First citationCai, J., Hu, X., Feng, X., Ji, L. & Bernal, I. (2001a). Acta Cryst. B57, 45–53.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCai, J., Hu, X., Yao, J. & Ji, L. (2001b). Inorg. Chem. Commun. 4, 478–482.  Web of Science CSD CrossRef CAS Google Scholar
First citationChowdhury, H., Ghosh, R., Rahaman, Sk. H. & Ghosh, B. K., (2007). Polyhedron, 26, 5023–5029.  Google Scholar
First citationDas, S., Bhar, K., Fun, H. K., Chantrapromma, S. & Ghosh, B. K. (2010). Inorg. Chim. Acta, 363, 784–792.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGustafsson, M., Fischer, A., Ilyukhin, A., Maliarik, M. & Nordblad, P. (2010). Inorg. Chem. 49, 5359–5361.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationHe, X. (2009). Acta Cryst. E65, m205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, X., Cai, J., Feng, X. & Ji, L. (2000). J. Chem. Crystallogr. 30, 27–34.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNie, F. M., Li, M., Li, G. X., Li, Z. & Li, W. (2010). Inorg. Chim. Acta, 363, 3351–3358.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, R. N., Kesharwani, M. K., Singh, A., Patel, D. K. & Choudhary, M. (2008). Transition Met. Chem. 33, 733–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatel, R. N., Singh, N., Patel, D. K. & Gundla, V. L. N. (2007). Indian J. Chem. Sect. A, 46, 422–427.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationShinohara, N., Matsufuji, S. & Okubo, W. (1991). Polyhedron, 10, 107–112.  CrossRef CAS Web of Science Google Scholar
First citationShoukry, M. M., Shehata, M. R. & Mohamed, M. M. A. (1998). Mikrochim. Acta, 129, 107–113.  Web of Science CrossRef CAS Google Scholar
First citationSun, S.-J., Deng, J.-H. & Liu, T.-L. (2010). Acta Cryst. E66, m981–m982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J., Xu, X.-J. & Tao, J.-Q. (2011). Acta Cryst. C67, m137–m139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z. L., Wang, X. L., Zhang, J. C., Wang, C. & Zhou, X. S. (2011). Struct. Chem. 22, 1297–1302.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1153-m1154
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds