[Journal logo]

Volume 68 
Part 9 
Pages i68-i69  
September 2012  

Received 5 July 2012
Accepted 8 August 2012
Online 15 August 2012

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](Si-O) = 0.002 Å
R = 0.015
wR = 0.037
Data-to-parameter ratio = 9.4
Details
Open access

Redetermination of the low-temperature polymorph of Li2MnSiO4 from single-crystal X-ray data

aDepartment of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Ikarashi 2-no-cho, Niigata City 950-2181, Japan,bCenter for Transdiciplinary Research, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan,cGraduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japan, and dDepartment of Earth Science and Technology, Faculty of Engineering and Resource Science, Akita University, Tegata Gakuen-machi, Akita 010-8502, Japan
Correspondence e-mail: msato@eng.niigata-u.ac.jp

Crystals of dilithium manganese(II) silicate were grown under high-temperature hydrothermal conditions in the system LiOH-MnO2-SiO2. The title compound crystallizes in the [beta]II-Li3PO4 structure type. The coordination polyhedra of all cations are slightly distorted tetrahedra (m symmetry for MnO4 and SiO4), which are linked by corner-sharing to each other. The vertices of the tetrahedra point to the same direction perpendicular to the distorted hexagonal close-packed (hcp) array of O atoms within which half of the tetrahedral voids are occupied by cations. In comparison with the previous refinement from powder X-ray data [Dominko et al. (2006[Dominko, R., Bele, M., Gaberscek, M., Meden, A., Remskar, M. & Jamnik, J. (2006). Electrochem. Commun. 8, 217-222.]). Electrochem. Commun. 8, 217-222], the present reinvestigation from single-crystal X-ray data allows a more precise determination of the distribution of the Li+ and Mn2+ cations, giving a perfectly site-ordered structure model for both Li+ and Mn2+.

Related literature

For background to structural studies of Li2MSiO4 (M = Mn, Fe, Co) compounds, see: Islam et al. (2011[Islam, M. S., Dominko, R., Masquelier, C., Sirisopanaporn, C., Armstrong, A. R. & Bruce, P. G. (2011). J. Mater. Chem. 21, 9811-9818.]); Santamaría-Pérez et al. (2012[Santamaría-Pérez, D., Amador, U., Tortajada, J., Dominko, R. & Arroyo-de Dompablo, M. E. (2012). Inorg. Chem. 51, 5779-5786.]); Setoguchi (1988[Setoguchi, M. (1988). Osaka Kogyo Gijutsu Shikensho Hokoku, pp. 1-83.]); Yamaguchi et al. (1979[Yamaguchi, H., Akatsuka, K., Setoguchi, M. & Takaki, Y. (1979). Acta Cryst. B35, 2680-2682.]). Polymorphism of Li2MnSiO4 was reported by Arroyo-de Dompablo et al. (2006[Arroyo-de Dompablo, M. E., Armand, M., Tarascon, J. M. & Amador, U. (2006). Electrochem. Commun. 8, 1292-1298.], 2008[Arroyo-de Dompablo, M. E., Dominko, R., Gallardo-Amores, J. M., Dupont, L., Mali, G., Ehrenberg, H., Jamnik, J. & Moraán, E. (2008). Chem. Mater. 20, 5574-5584.]); Belharouak et al. (2009[Belharouak, I., Abouimrane, A. & Amine, K. (2009). J. Phys. Chem. C, 113, 20733-20737.]); Dominko et al. (2006[Dominko, R., Bele, M., Gaberscek, M., Meden, A., Remskar, M. & Jamnik, J. (2006). Electrochem. Commun. 8, 217-222.]); Kokalj et al. (2007[Kokalj, A., Dominko, R., Mali, G., Meden, A., Gaberscek, M. & Jamnik, J. (2007). Chem. Mater. 19, 3633-3640.]); Politaev et al. (2007[Politaev, V. V., Petrenko, A. A., Nalbandyan, V. B., Medvedev, B. S. & Shvetsova, E. S. (2007). J. Solid State Chem. 180, 1045-1050.]); Wu et al. (2009[Wu, S. Q., Zhu, Z. Z., Yang, Y. & Hou, Z. F. (2009). Comput. Mater. Sci. 44, 1243-1251.]); Zhong et al. (2010[Zhong, G., Li, Y., Yan, P., Liu, Z., Xie, M. & Lin, H. (2010). J. Phys. Chem. C114, 3693-3700.]). For notation of Li3PO4 polymorphs, see: West & Glasser (1972[West, A. R. & Glasser, F. P. (1972). J. Solid State Chem. 4, 20-28.]). For theoretical studies of the redox potentials and Li migration paths of Li2MnSiO4, see: Kuganathan & Islam (2009[Kuganathan, N. & Islam, M. S. (2009). Chem. Mater. 21, 5196-5202.]); Mali et al. (2010[Mali, G., Meden, A. & Dominko, R. (2010). Chem. Commun. 46, 3306-3308.]); Duncan et al. (2011[Duncan, H., Kondamreddy, A., Mercier, P. H. J., Le Page, Y., Abu-Lebdeh, Y., Couillard, M., Whitfield, P. S. & Davidson, I. J. (2011). Chem. Mater. 23, 5446-5456.]), and for NMR studies of this material, see: Sirisopanaporn et al. (2011[Sirisopanaporn, C., Dominko, R., Masquelier, C., Armstrong, A. R., Mali, G. & Bruce, P. G. (2011). J. Mater. Chem. 21, 17823-17831.]). For the bond-valence method, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For crystallographic background, see: Cooper et al. (2002[Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.]).

Experimental

Crystal data
  • Li2MnSiO4

  • Mr = 160.91

  • Orthorhombic, P m n 21

  • a = 6.3133 (16) Å

  • b = 5.3677 (14) Å

  • c = 4.9685 (12) Å

  • V = 168.37 (7) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 4.11 mm-1

  • T = 295 K

  • 0.26 × 0.19 × 0.18 mm

Data collection
  • Rigaku Mercury375R diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.377, Tmax = 0.477

  • 1636 measured reflections

  • 423 independent reflections

  • 419 reflections with I > 2[sigma](I)

  • Rint = 0.019

Refinement
  • R[F2 > 2[sigma](F2)] = 0.015

  • wR(F2) = 0.037

  • S = 1.14

  • 423 reflections

  • 45 parameters

  • 1 restraint

  • [Delta][rho]max = 0.25 e Å-3

  • [Delta][rho]min = -0.62 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 189 Friedel pairs

  • Flack parameter: 0.171 (15)

Table 1
Selected geometric parameters (Å, °)

Li1-O1i 1.936 (10)
Li1-O3 1.956 (6)
Li1-O3ii 1.99 (2)
Li1-O2iii 2.009 (6)
Mn1-O3iv 2.0585 (16)
Mn1-O1 2.065 (2)
Mn1-O2 2.090 (2)
Si1-O1v 1.631 (3)
Si1-O3 1.6331 (17)
Si1-O2vi 1.639 (2)
O1i-Li1-O3 112.0 (7)
O1i-Li1-O3ii 107.5 (5)
O3-Li1-O3ii 107.7 (7)
O1i-Li1-O2iii 108.6 (6)
O3-Li1-O2iii 113.9 (5)
O3ii-Li1-O2iii 106.8 (6)
O3iv-Mn1-O3 124.58 (8)
O3iv-Mn1-O1 105.74 (5)
O3iv-Mn1-O2 107.31 (6)
O1-Mn1-O2 104.54 (8)
O1v-Si1-O3 109.35 (10)
O3-Si1-O3vii 109.58 (13)
O1v-Si1-O2vi 108.23 (13)
O3-Si1-O2vi 110.16 (10)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iv) -x+1, y, z; (v) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (vii) -x+2, y, z.

Table 2
Bond-valence parameters derived from the present model and the previous studies.

Atom Site Present work Dominko et al.1) Arroyo-de Dompablo et al.2)
Li 4b 1.02 (6) 1.0 (1) 0.9
Mn 2a 1.89 (5) 2.1 (1) 1.77
Si 2a 3.89 (7) 3.6 (2) 3.65
O1 2a 2.02 (9) 1.9 (3) 1.75
O2 4b 1.97 (7) 1.9 (2) 1.86
O3 2a 1.87 (7) 2.0 (2) 1.90
1) The data, referred to Dominko et al. (2006[Dominko, R., Bele, M., Gaberscek, M., Meden, A., Remskar, M. & Jamnik, J. (2006). Electrochem. Commun. 8, 217-222.]), are based on the coordinates for primary MO4 (M = Li, Mn, Si) tetrahedra. 2) The data, referred to Arroyo-de Dompablo et al. (2008[Arroyo-de Dompablo, M. E., Dominko, R., Gallardo-Amores, J. M., Dupont, L., Mali, G., Ehrenberg, H., Jamnik, J. & Moraán, E. (2008). Chem. Mater. 20, 5574-5584.]), are based on the coordinates for primary MO4 (M = Li, Mn, Si) tetrahedra optimized by density functional theory (DFT) methods.

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2658 ).


References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.  [ISI] [CrossRef] [ChemPort] [details]
Arroyo-de Dompablo, M. E., Armand, M., Tarascon, J. M. & Amador, U. (2006). Electrochem. Commun. 8, 1292-1298.  [ChemPort]
Arroyo-de Dompablo, M. E., Dominko, R., Gallardo-Amores, J. M., Dupont, L., Mali, G., Ehrenberg, H., Jamnik, J. & Moraán, E. (2008). Chem. Mater. 20, 5574-5584.  [ChemPort]
Belharouak, I., Abouimrane, A. & Amine, K. (2009). J. Phys. Chem. C, 113, 20733-20737.  [CrossRef] [ChemPort]
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.  [CrossRef] [ISI] [details]
Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.  [ISI] [CrossRef] [ChemPort] [details]
Dominko, R., Bele, M., Gaberscek, M., Meden, A., Remskar, M. & Jamnik, J. (2006). Electrochem. Commun. 8, 217-222.  [CrossRef] [ChemPort]
Duncan, H., Kondamreddy, A., Mercier, P. H. J., Le Page, Y., Abu-Lebdeh, Y., Couillard, M., Whitfield, P. S. & Davidson, I. J. (2011). Chem. Mater. 23, 5446-5456.  [CrossRef] [ChemPort]
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  [CrossRef] [ChemPort] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Islam, M. S., Dominko, R., Masquelier, C., Sirisopanaporn, C., Armstrong, A. R. & Bruce, P. G. (2011). J. Mater. Chem. 21, 9811-9818.  [CrossRef] [ChemPort]
Kokalj, A., Dominko, R., Mali, G., Meden, A., Gaberscek, M. & Jamnik, J. (2007). Chem. Mater. 19, 3633-3640.  [CrossRef] [ChemPort]
Kuganathan, N. & Islam, M. S. (2009). Chem. Mater. 21, 5196-5202.  [CrossRef] [ChemPort]
Mali, G., Meden, A. & Dominko, R. (2010). Chem. Commun. 46, 3306-3308.  [CrossRef] [ChemPort]
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.  [ISI] [CrossRef] [ChemPort] [details]
Politaev, V. V., Petrenko, A. A., Nalbandyan, V. B., Medvedev, B. S. & Shvetsova, E. S. (2007). J. Solid State Chem. 180, 1045-1050.  [CrossRef] [ChemPort]
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
Rigaku (2010). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Santamaría-Pérez, D., Amador, U., Tortajada, J., Dominko, R. & Arroyo-de Dompablo, M. E. (2012). Inorg. Chem. 51, 5779-5786.  [PubMed]
Setoguchi, M. (1988). Osaka Kogyo Gijutsu Shikensho Hokoku, pp. 1-83.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Sirisopanaporn, C., Dominko, R., Masquelier, C., Armstrong, A. R., Mali, G. & Bruce, P. G. (2011). J. Mater. Chem. 21, 17823-17831.  [CrossRef] [ChemPort]
West, A. R. & Glasser, F. P. (1972). J. Solid State Chem. 4, 20-28.  [CrossRef] [ChemPort]
Wu, S. Q., Zhu, Z. Z., Yang, Y. & Hou, Z. F. (2009). Comput. Mater. Sci. 44, 1243-1251.  [CrossRef] [ChemPort]
Yamaguchi, H., Akatsuka, K., Setoguchi, M. & Takaki, Y. (1979). Acta Cryst. B35, 2680-2682.  [CrossRef] [ChemPort] [details] [ISI]
Zhong, G., Li, Y., Yan, P., Liu, Z., Xie, M. & Lin, H. (2010). J. Phys. Chem. C114, 3693-3700.


Acta Cryst (2012). E68, i68-i69   [ doi:10.1107/S1600536812035040 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.