supplementary materials


xu5599 scheme

Acta Cryst. (2012). E68, m1162-m1163    [ doi:10.1107/S1600536812034587 ]

Diaquabis(2-iodobenzoato-[kappa]O)bis(nicotinamide-[kappa]N1)copper(II)

Ö. Aydin, N. Çaylak Delibas, H. Necefoglu and T. Hökelek

Abstract top

In the title complex, [Cu(C7H4IO2)2(C6H6N2O)2(H2O)2], the CuII cation is located on an inversion center and is coordinated by two monodentate 2-iodobenzoate (IB) anions, two nicotinamide (NA) ligands and two water molecules in a distorted octahedral coordination geometry. The dihedral angle between the carboxylate group and the adjacent benzene ring is 32.12 (14)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 82.02 (5)°. The coordinating water molecule links with the carboxylate group via an intramolecular O-H...O hydrogen bond. In the crystal, N-H...O, O-H...O and weak C-H...O hydrogen bonds link the molecules into a three-dimensional supramolecular network.

Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the title mononuclear complex, CuII cation is located on an inversion center and is coordinated by two 2-iodobenzoate (IB) anions, two nicotinamide (NA) ligands and two water molecules, all ligands coordinating in a monodentate manner (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012a), [Mn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009) and [Zn(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012b) have also been reported, where all the ligands coordinate to the metal atoms in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O4 and O4') in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.275 (2) Å] and C1—O2 [1.245 (2) Å] bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The Cu—O bond lengths are 1.9937 (14) Å (for benzoate oxygens) and 2.5078 (16) Å (for water oxygens), and the Cu—N bond length is 1.9984 (16) Å, close to standard values (Allen et al., 1987). The Cu atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.5995 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 32.12 (14)°. The benzene A (C2—C7) and the pyridine B (N1/C8—C12) rings are oriented at a dihedral angle of A/B = 82.02 (5)°. The coordinating water molecule links with the carboxylate group via an O—H···O hydrogen bond (Table 1).

In the crystal, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure.

Related literature top

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2012a,b); Sertçelik et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.248 g, 5 mmol) in H2O (200 ml) and NA (1.220 g, 200 mmol) in H2O (20 ml) with 2-iodobenzoic acid (2.700 g, 10 mmol) in H2O (20 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H21 and H22 (for NH2) and H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') -x, 1-y, -z].
Diaquabis(2-iodobenzoato-κO)bis(nicotinamide-κN1)copper(II) top
Crystal data top
[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2]F(000) = 814
Mr = 837.85Dx = 1.971 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7325 reflections
a = 8.1617 (2) Åθ = 2.8–28.3°
b = 18.3365 (4) ŵ = 3.02 mm1
c = 9.7047 (3) ÅT = 100 K
β = 103.573 (3)°Block, blue
V = 1411.81 (7) Å30.39 × 0.36 × 0.24 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3531 independent reflections
Radiation source: fine-focus sealed tube3337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.528, Tmax = 0.661k = 2424
13216 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.437P]
where P = (Fo2 + 2Fc2)/3
3531 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2]V = 1411.81 (7) Å3
Mr = 837.85Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.1617 (2) ŵ = 3.02 mm1
b = 18.3365 (4) ÅT = 100 K
c = 9.7047 (3) Å0.39 × 0.36 × 0.24 mm
β = 103.573 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3337 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 0.661Rint = 0.018
13216 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058Δρmax = 0.97 e Å3
S = 1.13Δρmin = 0.50 e Å3
3531 reflectionsAbsolute structure: ?
203 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.01102 (8)
I10.120179 (18)0.213804 (8)0.323774 (16)0.02225 (6)
O10.10863 (18)0.40869 (8)0.04600 (14)0.0137 (3)
O20.10292 (18)0.37645 (8)0.22737 (15)0.0163 (3)
O30.4441 (2)0.48850 (9)0.32723 (15)0.0195 (3)
O40.2967 (2)0.54420 (9)0.08965 (16)0.0174 (3)
H410.252 (5)0.571 (2)0.145 (4)0.045 (10)*
H420.369 (5)0.521 (2)0.140 (4)0.056 (12)*
N10.0134 (2)0.45775 (9)0.18686 (17)0.0116 (3)
N20.3517 (2)0.42184 (11)0.52508 (19)0.0191 (4)
H210.434 (4)0.4370 (16)0.555 (3)0.024 (7)*
H220.276 (4)0.3983 (16)0.578 (3)0.026 (8)*
C10.0459 (2)0.37253 (10)0.1582 (2)0.0116 (3)
C20.1668 (2)0.32473 (11)0.2144 (2)0.0117 (3)
C30.1182 (2)0.26188 (11)0.2949 (2)0.0120 (3)
C40.2309 (3)0.22441 (11)0.3571 (2)0.0162 (4)
H40.19580.18310.41160.019*
C50.3955 (3)0.24892 (12)0.3375 (2)0.0180 (4)
H50.47030.22470.38070.022*
C60.4487 (3)0.30965 (12)0.2535 (2)0.0177 (4)
H60.55990.32540.23820.021*
C70.3354 (3)0.34687 (11)0.1925 (2)0.0147 (4)
H70.37220.38730.13590.018*
C80.1566 (2)0.46254 (10)0.2307 (2)0.0119 (4)
H80.24950.48470.17170.014*
C90.1720 (2)0.43569 (10)0.36104 (19)0.0113 (3)
C100.0335 (3)0.40108 (11)0.4471 (2)0.0153 (4)
H100.04080.38150.53380.018*
C110.1159 (3)0.39604 (12)0.4024 (2)0.0164 (4)
H110.21010.37330.45850.020*
C120.1209 (3)0.42577 (11)0.2720 (2)0.0142 (4)
H120.22120.42350.24240.017*
C130.3339 (3)0.45019 (11)0.4031 (2)0.0140 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01365 (16)0.01161 (15)0.00929 (15)0.00216 (12)0.00570 (12)0.00079 (11)
I10.01407 (8)0.01936 (8)0.03321 (10)0.00596 (5)0.00532 (6)0.00443 (5)
O10.0148 (7)0.0151 (7)0.0114 (6)0.0026 (5)0.0036 (5)0.0004 (5)
O20.0112 (7)0.0219 (7)0.0152 (7)0.0038 (6)0.0019 (5)0.0012 (5)
O30.0158 (7)0.0289 (8)0.0142 (7)0.0075 (6)0.0046 (6)0.0058 (6)
O40.0148 (7)0.0222 (8)0.0150 (7)0.0012 (6)0.0028 (6)0.0021 (6)
N10.0112 (8)0.0128 (7)0.0115 (7)0.0007 (6)0.0044 (6)0.0003 (6)
N20.0149 (9)0.0301 (10)0.0146 (8)0.0072 (8)0.0082 (7)0.0074 (7)
C10.0119 (9)0.0124 (8)0.0112 (8)0.0013 (7)0.0042 (7)0.0025 (6)
C20.0115 (9)0.0128 (8)0.0115 (8)0.0014 (7)0.0041 (7)0.0010 (6)
C30.0088 (9)0.0132 (8)0.0139 (9)0.0005 (7)0.0020 (7)0.0011 (7)
C40.0185 (10)0.0138 (9)0.0163 (9)0.0032 (8)0.0042 (8)0.0020 (7)
C50.0153 (10)0.0195 (10)0.0211 (10)0.0053 (8)0.0083 (8)0.0003 (8)
C60.0111 (9)0.0190 (10)0.0235 (10)0.0000 (8)0.0052 (8)0.0006 (8)
C70.0142 (9)0.0136 (9)0.0160 (9)0.0006 (7)0.0030 (7)0.0008 (7)
C80.0113 (9)0.0135 (9)0.0113 (8)0.0013 (7)0.0037 (7)0.0001 (7)
C90.0103 (8)0.0136 (8)0.0109 (8)0.0011 (7)0.0044 (7)0.0002 (6)
C100.0148 (10)0.0195 (10)0.0121 (9)0.0026 (8)0.0039 (7)0.0033 (7)
C110.0138 (9)0.0202 (10)0.0150 (9)0.0058 (8)0.0028 (7)0.0037 (7)
C120.0129 (9)0.0150 (9)0.0158 (9)0.0026 (7)0.0053 (7)0.0008 (7)
C130.0111 (9)0.0183 (9)0.0128 (9)0.0006 (7)0.0033 (7)0.0002 (7)
Geometric parameters (Å, º) top
Cu1—O11.9937 (14)C3—C21.397 (3)
Cu1—O1i1.9937 (14)C4—C31.394 (3)
Cu1—O42.5078 (16)C4—C51.387 (3)
Cu1—O4i2.5078 (16)C4—H40.9300
Cu1—N11.9984 (16)C5—C61.388 (3)
Cu1—N1i1.9984 (16)C5—H50.9300
I1—C32.0942 (19)C6—H60.9300
O1—C11.275 (2)C7—C61.389 (3)
O2—C11.245 (2)C7—H70.9300
O3—C131.238 (3)C8—H80.9300
O4—H410.87 (4)C9—C81.390 (2)
O4—H420.80 (4)C9—C101.391 (3)
N1—C81.337 (2)C9—C131.496 (3)
N1—C121.343 (3)C10—C111.390 (3)
N2—C131.331 (3)C10—H100.9300
N2—H220.83 (3)C11—H110.9300
N2—H210.84 (3)C12—C111.387 (3)
C1—C21.513 (3)C12—H120.9300
C2—C71.403 (3)
O1i—Cu1—O1180.00 (7)C4—C5—C6119.99 (19)
O1—Cu1—N189.98 (6)C4—C5—H5120.0
O1i—Cu1—N190.02 (6)C6—C5—H5120.0
O1—Cu1—N1i90.02 (6)C5—C6—C7119.8 (2)
O1i—Cu1—N1i89.98 (6)C5—C6—H6120.1
O4—Cu1—O184.56 (6)C7—C6—H6120.1
O4—Cu1—N193.70 (6)C2—C7—H7119.3
N1—Cu1—N1i180.00 (9)C6—C7—C2121.42 (19)
H41—O4—H42106 (4)C6—C7—H7119.3
C1—O1—Cu1121.16 (13)N1—C8—C9122.62 (18)
C8—N1—Cu1120.11 (13)N1—C8—H8118.7
C12—N1—Cu1121.13 (13)C9—C8—H8118.7
C8—N1—C12118.74 (16)C8—C9—C10118.26 (18)
C13—N2—H21116 (2)C8—C9—C13117.39 (17)
C13—N2—H22122 (2)C10—C9—C13124.23 (17)
H22—N2—H21120 (3)C9—C10—H10120.3
O1—C1—C2116.35 (17)C11—C10—C9119.46 (18)
O2—C1—O1125.16 (18)C11—C10—H10120.3
O2—C1—C2118.39 (17)C10—C11—H11120.8
C3—C2—C1123.79 (18)C12—C11—C10118.33 (19)
C3—C2—C7117.57 (18)C12—C11—H11120.8
C7—C2—C1118.51 (17)N1—C12—C11122.56 (19)
C2—C3—I1123.71 (14)N1—C12—H12118.7
C4—C3—I1114.92 (15)C11—C12—H12118.7
C4—C3—C2121.30 (18)O3—C13—N2122.34 (19)
C3—C4—H4120.1O3—C13—C9120.19 (17)
C5—C4—C3119.83 (19)N2—C13—C9117.45 (18)
C5—C4—H4120.1
N1—Cu1—O1—C1123.90 (15)I1—C3—C2—C7173.86 (14)
N1i—Cu1—O1—C156.10 (15)C4—C3—C2—C1172.78 (18)
O1—Cu1—N1—C8133.41 (15)C4—C3—C2—C73.0 (3)
O1i—Cu1—N1—C846.59 (15)C5—C4—C3—I1176.15 (16)
O1—Cu1—N1—C1248.21 (16)C5—C4—C3—C21.0 (3)
O1i—Cu1—N1—C12131.79 (16)C3—C4—C5—C61.5 (3)
Cu1—O1—C1—O220.6 (3)C4—C5—C6—C71.8 (3)
Cu1—O1—C1—C2155.73 (13)C2—C7—C6—C50.4 (3)
Cu1—N1—C8—C9178.46 (15)C10—C9—C8—N11.5 (3)
C12—N1—C8—C90.0 (3)C13—C9—C8—N1174.79 (18)
Cu1—N1—C12—C11179.89 (16)C8—C9—C10—C111.6 (3)
C8—N1—C12—C111.5 (3)C13—C9—C10—C11174.41 (19)
O1—C1—C2—C3153.14 (18)C8—C9—C13—O34.3 (3)
O1—C1—C2—C731.1 (3)C8—C9—C13—N2177.18 (19)
O2—C1—C2—C330.3 (3)C10—C9—C13—O3171.8 (2)
O2—C1—C2—C7145.49 (19)C10—C9—C13—N26.8 (3)
C1—C2—C7—C6173.32 (18)C9—C10—C11—C120.3 (3)
C3—C2—C7—C62.7 (3)N1—C12—C11—C101.3 (3)
I1—C3—C2—C110.3 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3ii0.84 (3)2.17 (3)2.942 (3)154 (3)
N2—H22···O2iii0.83 (3)2.11 (3)2.881 (2)154 (3)
O4—H41···O2i0.87 (4)1.87 (4)2.720 (2)165 (4)
O4—H42···O3iv0.80 (4)2.16 (4)2.923 (2)160 (4)
C10—H10···O2iii0.932.493.368 (2)158
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z1; (iii) x, y, z1; (iv) x1, y, z.
Selected bond lengths (Å) top
Cu1—O11.9937 (14)Cu1—N11.9984 (16)
Cu1—O42.5078 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3i0.84 (3)2.17 (3)2.942 (3)154 (3)
N2—H22···O2ii0.83 (3)2.11 (3)2.881 (2)154 (3)
O4—H41···O2iii0.87 (4)1.87 (4)2.720 (2)165 (4)
O4—H42···O3iv0.80 (4)2.16 (4)2.923 (2)160 (4)
C10—H10···O2ii0.932.493.368 (2)158
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y, z1; (iii) x, y+1, z; (iv) x1, y, z.
Acknowledgements top

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Aydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521–m522.

Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607–m608.

Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.

Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m900–m901.

Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m946–m947.

Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m1127–m1128.

Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324–m325.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.