supplementary materials


xu5600 scheme

Acta Cryst. (2012). E68, m1169    [ doi:10.1107/S160053681203471X ]

cis-Dibromidobis(2-phenylpyridine-[kappa]N)platinum(II)

K. Ha

Abstract top

In the title complex, [PtBr2(C11H9N)2], the PtII ion has a distorted cis-Br2N2 square-planar coordination geometry defined by two N atoms from two 2-phenylpyridine (ppy) ligands and two Br- anions. The ppy ligands are not planar, the dihedral angles between the pyridine and benzene rings being 49.0 (3) and 47.3 (3)°. In the crystal, the complex molecules are stacked in columns along the a axis. In the columns, there are numerous intra- and intermolecular [pi]-[pi] interactions between the six-membered rings, the shortest ring centroid-centroid distance being 3.774 (6) Å.

Comment top

Crystal structures of the related PtII and PdII complexes, such as cis-[PtCl2(ppy)2] (ppy = 2-phenylpyridine, C11H9N) (Yoshinari et al., 2010) and trans-[PdX2(ppy)2] (X = Cl or I) (Ha, 2011; Ha, 2012), have been investigated previously.

The PtII ion in the title complex, [PtBr2(ppy)2], has a distorted cis-Br2N2 square-planar coordination geometry defined by two N atoms from two ppy ligands and two Br- anions (Fig. 1). The Pt—N and Pt—Br bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the two pyridine rings are inclined to the least-squares plane of the PtBr2N2 unit [maximum deviation = 0.092 (4) Å], making dihedral angles of 61.6 (2)° and 64.0 (2)°. The ppy ligands are not planar, the dihedral angles between the pyridine and benzene rings being 49.0 (3)° and 47.3 (3)°. The complex molecules are stacked in columns along the a axis. In the columns, numerous intra- and intermolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.774 (6) Å (Fig. 2).

Related literature top

For the crystal structures of the related PtII and PdII complexes, cis-[PtCl2(ppy)2] and trans-[PdX2(ppy)2] (X = Cl or I), see: Yoshinari et al. (2010); Ha (2011, 2012).

Experimental top

To a solution of K2PtBr4 (0.2391 g, 0.403 mmol) in H2O (20 ml)/MeOH (100 ml) was added 2-phenylpyridine (0.1810 g, 1.166 mmol) and stirred for 7 h at room temperature. The formed brown precipitate was removed by filtration and the solvent of the filtrate was evaporated. The residue was washed with H2O and dried at 323 K, to give a yellow powder (0.1672 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The highest peak (1.73 e Å-3) and the deepest hole (-0.93 e Å-3) in the difference Fourier map are located 1.31 Å and 0.88 Å, respectively, from the atoms H11 and Pt1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level and the atom numbering.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex.
cis-Dibromidobis(2-phenylpyridine-κN)platinum(II) top
Crystal data top
[PtBr2(C11H9N)2]F(000) = 1248
Mr = 665.29Dx = 2.106 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4325 reflections
a = 7.6268 (9) Åθ = 2.2–26.0°
b = 18.277 (2) ŵ = 10.51 mm1
c = 15.1626 (18) ÅT = 200 K
β = 96.948 (2)°Stick, yellow
V = 2098.1 (4) Å30.24 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2931 independent reflections
Radiation source: fine-focus sealed tube2645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.729, Tmax = 1.000k = 2222
6126 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2931 reflectionsΔρmax = 1.73 e Å3
244 parametersΔρmin = 0.93 e Å3
2 restraintsAbsolute structure: Flack (1983), 856 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.037 (13)
Crystal data top
[PtBr2(C11H9N)2]V = 2098.1 (4) Å3
Mr = 665.29Z = 4
Monoclinic, CcMo Kα radiation
a = 7.6268 (9) ŵ = 10.51 mm1
b = 18.277 (2) ÅT = 200 K
c = 15.1626 (18) Å0.24 × 0.20 × 0.14 mm
β = 96.948 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2931 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2645 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 1.000Rint = 0.029
6126 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068Δρmax = 1.73 e Å3
S = 1.04Δρmin = 0.93 e Å3
2931 reflectionsAbsolute structure: Flack (1983), 856 Friedel pairs
244 parametersFlack parameter: 0.037 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.39565 (2)0.136006 (14)0.162689 (18)0.02282 (10)
Br10.19970 (16)0.03626 (5)0.11234 (8)0.0369 (3)
Br20.5217 (2)0.14016 (7)0.02336 (11)0.0415 (4)
N10.5395 (11)0.2278 (4)0.2077 (6)0.030 (2)
N20.2978 (14)0.1281 (4)0.2842 (7)0.021 (2)
C10.4929 (14)0.2895 (5)0.1628 (8)0.035 (3)
H10.41810.28650.10810.042*
C20.5505 (16)0.3567 (5)0.1939 (10)0.042 (3)
H20.51970.39970.16050.051*
C30.6514 (16)0.3604 (5)0.2727 (10)0.044 (3)
H30.68700.40680.29700.052*
C40.7031 (14)0.2986 (5)0.3180 (8)0.040 (3)
H40.77760.30130.37280.048*
C50.6453 (13)0.2306 (5)0.2829 (7)0.029 (2)
C60.7103 (13)0.1613 (5)0.3294 (7)0.029 (2)
C70.7024 (15)0.1529 (7)0.4178 (8)0.043 (3)
H70.65550.19120.45030.052*
C80.7627 (16)0.0885 (7)0.4618 (9)0.052 (3)
H80.75600.08240.52350.063*
C90.8311 (17)0.0349 (7)0.4137 (10)0.056 (4)
H90.87340.00870.44290.067*
C100.8406 (15)0.0420 (6)0.3247 (9)0.046 (3)
H100.88960.00360.29310.055*
C110.7788 (14)0.1051 (5)0.2802 (8)0.036 (3)
H110.78270.11020.21810.043*
C120.3481 (13)0.0673 (4)0.3308 (7)0.027 (2)
H120.41300.03100.30390.032*
C130.3097 (13)0.0563 (5)0.4142 (7)0.029 (2)
H130.33880.01150.44410.035*
C140.2264 (13)0.1122 (5)0.4554 (7)0.033 (2)
H140.20450.10790.51560.040*
C150.1768 (13)0.1735 (6)0.4071 (7)0.031 (2)
H150.11600.21150.43350.037*
C160.2145 (12)0.1813 (5)0.3183 (6)0.023 (2)
C170.1496 (12)0.2463 (4)0.2664 (7)0.024 (2)
C180.1739 (13)0.3160 (5)0.3025 (8)0.035 (3)
H180.23350.32290.36060.042*
C190.1086 (17)0.3755 (6)0.2510 (11)0.052 (4)
H190.12320.42360.27450.062*
C200.0250 (16)0.3656 (6)0.1683 (10)0.046 (3)
H200.01620.40680.13370.055*
C210.0010 (15)0.2976 (6)0.1341 (8)0.045 (3)
H210.06220.29140.07620.054*
C220.0612 (12)0.2370 (5)0.1830 (7)0.028 (2)
H220.04260.18920.15890.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02761 (18)0.01791 (14)0.02340 (18)0.0005 (2)0.00489 (12)0.0005 (2)
Br10.0466 (7)0.0262 (5)0.0378 (6)0.0076 (5)0.0053 (5)0.0108 (5)
Br20.0546 (10)0.0435 (8)0.0291 (8)0.0010 (6)0.0162 (7)0.0022 (6)
N10.032 (5)0.026 (4)0.035 (5)0.008 (4)0.012 (4)0.002 (4)
N20.018 (5)0.022 (4)0.021 (6)0.005 (3)0.003 (4)0.006 (4)
C10.040 (6)0.019 (4)0.048 (7)0.001 (4)0.009 (5)0.008 (5)
C20.044 (7)0.024 (5)0.062 (9)0.010 (5)0.019 (7)0.001 (5)
C30.039 (7)0.020 (5)0.075 (10)0.013 (5)0.020 (7)0.010 (6)
C40.038 (7)0.035 (6)0.047 (7)0.006 (5)0.008 (5)0.009 (5)
C50.024 (5)0.031 (5)0.033 (6)0.008 (4)0.005 (4)0.005 (5)
C60.027 (6)0.025 (4)0.033 (6)0.006 (4)0.003 (4)0.003 (4)
C70.026 (6)0.067 (8)0.034 (7)0.008 (6)0.003 (5)0.011 (6)
C80.046 (7)0.067 (8)0.042 (7)0.020 (7)0.002 (6)0.008 (7)
C90.046 (8)0.046 (7)0.071 (10)0.009 (6)0.011 (7)0.026 (7)
C100.040 (7)0.032 (6)0.061 (9)0.007 (5)0.012 (6)0.002 (6)
C110.040 (6)0.028 (5)0.039 (7)0.001 (5)0.002 (5)0.008 (5)
C120.032 (5)0.017 (4)0.031 (6)0.004 (4)0.000 (4)0.001 (4)
C130.029 (6)0.025 (5)0.033 (6)0.005 (4)0.001 (5)0.007 (4)
C140.033 (6)0.041 (5)0.026 (6)0.006 (5)0.005 (5)0.013 (5)
C150.027 (6)0.037 (5)0.029 (6)0.007 (4)0.010 (4)0.007 (5)
C160.022 (5)0.018 (4)0.027 (5)0.004 (4)0.001 (4)0.004 (4)
C170.026 (5)0.014 (4)0.034 (6)0.000 (4)0.013 (4)0.002 (4)
C180.026 (5)0.026 (5)0.053 (7)0.002 (4)0.005 (5)0.002 (5)
C190.039 (7)0.026 (5)0.095 (12)0.005 (5)0.026 (8)0.006 (7)
C200.038 (7)0.027 (6)0.076 (10)0.003 (5)0.018 (7)0.021 (6)
C210.049 (7)0.044 (7)0.044 (7)0.023 (6)0.012 (6)0.013 (6)
C220.024 (5)0.029 (5)0.030 (6)0.002 (4)0.005 (4)0.001 (4)
Geometric parameters (Å, º) top
Pt1—N12.075 (8)C9—H90.9500
Pt1—N22.074 (10)C10—C111.390 (14)
Pt1—Br12.4216 (11)C10—H100.9500
Pt1—Br22.4258 (15)C11—H110.9500
N1—C51.316 (13)C12—C131.347 (14)
N1—C11.343 (12)C12—H120.9500
N2—C161.303 (12)C13—C141.391 (14)
N2—C121.346 (12)C13—H130.9500
C1—C21.368 (14)C14—C151.366 (14)
C1—H10.9500C14—H140.9500
C2—C31.343 (19)C15—C161.418 (13)
C2—H20.9500C15—H150.9500
C3—C41.356 (16)C16—C171.477 (12)
C3—H30.9500C17—C221.370 (14)
C4—C51.400 (13)C17—C181.389 (13)
C4—H40.9500C18—C191.396 (17)
C5—C61.505 (13)C18—H180.9500
C6—C71.358 (16)C19—C201.348 (19)
C6—C111.406 (14)C19—H190.9500
C7—C81.402 (17)C20—C211.351 (16)
C7—H70.9500C20—H200.9500
C8—C91.363 (17)C21—C221.385 (13)
C8—H80.9500C21—H210.9500
C9—C101.366 (18)C22—H220.9500
N2—Pt1—N189.8 (3)C9—C10—C11120.1 (12)
N2—Pt1—Br187.3 (3)C9—C10—H10119.9
N1—Pt1—Br1173.9 (2)C11—C10—H10119.9
N2—Pt1—Br2176.9 (3)C10—C11—C6118.4 (10)
N1—Pt1—Br290.7 (2)C10—C11—H11120.8
Br1—Pt1—Br292.50 (5)C6—C11—H11120.8
C5—N1—C1120.2 (9)N2—C12—C13122.4 (10)
C5—N1—Pt1124.1 (7)N2—C12—H12118.8
C1—N1—Pt1114.5 (7)C13—C12—H12118.8
C16—N2—C12121.9 (10)C12—C13—C14118.4 (9)
C16—N2—Pt1123.1 (7)C12—C13—H13120.8
C12—N2—Pt1114.4 (7)C14—C13—H13120.8
N1—C1—C2121.6 (12)C15—C14—C13118.2 (9)
N1—C1—H1119.2C15—C14—H14120.9
C2—C1—H1119.2C13—C14—H14120.9
C3—C2—C1118.6 (11)C14—C15—C16121.1 (9)
C3—C2—H2120.7C14—C15—H15119.4
C1—C2—H2120.7C16—C15—H15119.4
C2—C3—C4120.5 (10)N2—C16—C15117.8 (9)
C2—C3—H3119.7N2—C16—C17122.5 (9)
C4—C3—H3119.7C15—C16—C17119.5 (8)
C3—C4—C5119.2 (11)C22—C17—C18120.3 (9)
C3—C4—H4120.4C22—C17—C16119.1 (8)
C5—C4—H4120.4C18—C17—C16120.5 (9)
N1—C5—C4119.7 (10)C17—C18—C19118.2 (11)
N1—C5—C6120.4 (9)C17—C18—H18120.9
C4—C5—C6119.9 (9)C19—C18—H18120.9
C7—C6—C11120.4 (10)C20—C19—C18120.8 (11)
C7—C6—C5120.3 (9)C20—C19—H19119.6
C11—C6—C5119.3 (9)C18—C19—H19119.6
C6—C7—C8120.8 (11)C19—C20—C21120.7 (11)
C6—C7—H7119.6C19—C20—H20119.6
C8—C7—H7119.6C21—C20—H20119.6
C9—C8—C7118.3 (12)C20—C21—C22120.4 (12)
C9—C8—H8120.9C20—C21—H21119.8
C7—C8—H8120.9C22—C21—H21119.8
C8—C9—C10122.0 (12)C17—C22—C21119.5 (9)
C8—C9—H9119.0C17—C22—H22120.3
C10—C9—H9119.0C21—C22—H22120.3
N2—Pt1—N1—C551.4 (8)C8—C9—C10—C110.3 (19)
Br2—Pt1—N1—C5125.5 (7)C9—C10—C11—C61.2 (16)
N2—Pt1—N1—C1116.7 (7)C7—C6—C11—C101.2 (15)
Br2—Pt1—N1—C166.4 (7)C5—C6—C11—C10179.0 (9)
N1—Pt1—N2—C1655.9 (9)C16—N2—C12—C132.7 (16)
Br1—Pt1—N2—C16118.6 (9)Pt1—N2—C12—C13174.1 (8)
N1—Pt1—N2—C12115.3 (8)N2—C12—C13—C144.8 (15)
Br1—Pt1—N2—C1270.1 (8)C12—C13—C14—C154.4 (15)
C5—N1—C1—C21.1 (15)C13—C14—C15—C162.2 (14)
Pt1—N1—C1—C2167.5 (8)C12—N2—C16—C150.2 (15)
N1—C1—C2—C32.1 (16)Pt1—N2—C16—C15170.9 (7)
C1—C2—C3—C43.6 (17)C12—N2—C16—C17176.5 (9)
C2—C3—C4—C52.0 (16)Pt1—N2—C16—C1712.9 (14)
C1—N1—C5—C42.7 (14)C14—C15—C16—N20.1 (14)
Pt1—N1—C5—C4164.7 (7)C14—C15—C16—C17176.4 (9)
C1—N1—C5—C6174.7 (8)N2—C16—C17—C2245.9 (13)
Pt1—N1—C5—C617.9 (12)C15—C16—C17—C22130.2 (9)
C3—C4—C5—N11.2 (15)N2—C16—C17—C18135.6 (10)
C3—C4—C5—C6176.2 (9)C15—C16—C17—C1848.2 (13)
N1—C5—C6—C7132.2 (11)C22—C17—C18—C191.0 (14)
C4—C5—C6—C750.3 (13)C16—C17—C18—C19179.4 (9)
N1—C5—C6—C1147.6 (13)C17—C18—C19—C200.4 (16)
C4—C5—C6—C11129.9 (10)C18—C19—C20—C211.5 (18)
C11—C6—C7—C80.2 (16)C19—C20—C21—C221.3 (17)
C5—C6—C7—C8180.0 (9)C18—C17—C22—C211.2 (14)
C6—C7—C8—C90.7 (17)C16—C17—C22—C21179.7 (8)
C7—C8—C9—C100.7 (18)C20—C21—C22—C170.1 (15)
Selected bond lengths (Å) top
Pt1—N12.075 (8)Pt1—Br12.4216 (11)
Pt1—N22.074 (10)Pt1—Br22.4258 (15)
Acknowledgements top

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

references
References top

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 501–502.

Ha, K. (2012). Acta Cryst. E68, m102.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yoshinari, N., Kitani, N. & Konno, T. (2010). Acta Cryst. E66, m1499.