supplementary materials


xu5601 scheme

Acta Cryst. (2012). E68, m1176    [ doi:10.1107/S1600536812035283 ]

catena-Poly[[[{1-[(E)-phenyl(pyridin-2-yl-[kappa]N)methylidene]semicarbazidato-[kappa]2N1,O}copper(II)]-[mu]-dicyanamido-[kappa]2N1:N5] monohydrate]

R. J. Kunnath, M. R. Prathapachandra Kurup and S. W. Ng

Abstract top

The CuII atoms in the title coordination polymer, {[Cu(C13H11N4O)(C2N3)]·H2O}n, are N,N',O-chelated by the deprotonated Schiff base ligands, and adjacent metal atoms are bridged by the dicyanamide ions, generating a polymeric chain that propagates along the b axis. The two independent metal atoms show a square-pyramidal N4O coordination. The two independent water molecules are disordered over two positions; each water molecule is a hydrogen-bond donor to a carbonyl O atom. Weak N-H...N hydrogen bonding is also observed.

Comment top

2-Benzoylpyridine semicarbazone (de Lima et al., 2008) is a Schiff base that is capable of N,N',O-chelation to transition metal ions. This feature has been documented a copper(II) dichloride adduct; in this, the Schiff base exists as a neutral molecule (Peŕez-Rebolledo et al., 2006). However, the CuII atom in the coordination polymer, [Cu(C2N3)(C13H11N4O).H2O]n (I), is N,N',O-chelated instead by the deprotonated Schiff base (Fig. 1). Adjacent metal atoms are bridged by the dicyanamide ion to generate a chain that propagates along the b axis of the orthorhombic unit cell (Fig. 2). The two independent metal atoms show square pyramidal coordination. The two independent water molecules are disordered over two positions; each water molecule is a hydrogen-bond donor to a carbonyl O atom.

Related literature top

For the synthesis of the Schiff base ligand, see: de Lima et al. (2008). For a related copper(II) derivative, see: Peŕez-Rebolledo et al. (2006).

Experimental top

A methanol solution (20 ml) of 2-benzoylpyridine semicarbazone (0.240 g,1 mmol) (de Lima et al., 2008), copper acetate monohydrate (0.199 g, 1 mmol) and sodium dicyanamide (0.089 g, 1 mmol) was heated for 5 h. The dark green solid was collected and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms were similarly treated (N–H 0.88 Å) and their temperature factors tied by a factor of 1.2 times.

Omitted owing interference from the beam stop were (2 1 0), (0 0 2), (1 1 2), (1 1 4) and (1 2 1).

The presence of water was indicated by an infrared spectral measurement. The two independent water molecules are both disordered over two positions; the occupancy could not be refined, and was assumed as a 1:1 type of disorder. For one molecule, the disorder is such that two components are separated by about 2 Å, so that one hydrogen atom should be midway between two oxygen atoms. For the other, the two are separated by about 1 Å, so that one hydrogen atom should be occupying the site of the other oxygen atom. For both, hydrogen atoms were positioned on only one component oxygen atom so that each water molecule forms only one hydrogen bond. Furthermore, the hydrogen atoms were given full occupancy, i.e., hydrogen atoms were not placed on those atoms that do not engage in hydrogen bonding. The temperature factors of the primed atoms were set to those of the unprimed ones, and the anisotropic temperature factors were tightly restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain structure of [Cu(C2N3)(C13H11N4O).H2O]n at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the water molecules is not shown.
[Figure 2] Fig. 2. Dicyanamide-bridged chain structure. Water molecules are not shown.
catena-Poly[[[{1-[(E)-phenyl(pyridin-2-yl-κN)methylidene]semicarbazidato-κ2N1,O}copper(II)]-µ-dicyanamido-κ2N1:N5] monohydrate] top
Crystal data top
[Cu(C13H11N4O)(C2N3)]·H2OF(000) = 3152
Mr = 386.86Dx = 1.477 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9967 reflections
a = 12.3996 (2) Åθ = 2.7–26.5°
b = 21.0115 (4) ŵ = 1.28 mm1
c = 26.7059 (5) ÅT = 293 K
V = 6957.8 (2) Å3Prim, green
Z = 160.40 × 0.30 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
7982 independent reflections
Radiation source: fine-focus sealed tube5027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1614
Tmin = 0.629, Tmax = 0.784k = 2727
110924 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0668P)2 + 9.8211P]
where P = (Fo2 + 2Fc2)/3
7982 reflections(Δ/σ)max = 0.001
457 parametersΔρmax = 0.80 e Å3
12 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu(C13H11N4O)(C2N3)]·H2OV = 6957.8 (2) Å3
Mr = 386.86Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 12.3996 (2) ŵ = 1.28 mm1
b = 21.0115 (4) ÅT = 293 K
c = 26.7059 (5) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5027 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.054
Tmin = 0.629, Tmax = 0.784θmax = 27.5°
110924 measured reflectionsStandard reflections: 0
7982 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.166Δρmax = 0.80 e Å3
S = 1.12Δρmin = 0.46 e Å3
7982 reflectionsAbsolute structure: ?
457 parametersFlack parameter: ?
12 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.74889 (4)0.32160 (2)0.591725 (16)0.03950 (15)
Cu20.51236 (4)0.06952 (2)0.406562 (15)0.03717 (15)
O10.6417 (2)0.38125 (13)0.61888 (10)0.0541 (8)
O20.6166 (2)0.13248 (12)0.38040 (10)0.0489 (7)
O1W0.4729 (16)0.4332 (10)0.5571 (8)0.269 (7)0.50
H1W10.52660.42280.57450.404*
H1W20.48080.47100.54750.404*
O2W0.8427 (16)0.1463 (9)0.4332 (7)0.234 (6)0.50
H2W10.78790.13360.41770.280*
H2W20.83670.18580.43730.280*
O1W'0.4691 (17)0.5292 (11)0.5296 (8)0.269 (7)0.50
O2W'0.7929 (19)0.1888 (10)0.4402 (8)0.234 (6)0.50
N10.8834 (3)0.26882 (16)0.58984 (12)0.0469 (8)
N20.7736 (3)0.31179 (14)0.66329 (11)0.0362 (7)
N30.7020 (3)0.33965 (15)0.69487 (11)0.0419 (7)
N40.5629 (3)0.41008 (19)0.69133 (14)0.0644 (11)
H410.51840.43510.67490.077*
H420.55860.40730.72410.077*
N50.3807 (3)0.01320 (15)0.40768 (10)0.0396 (7)
N60.4882 (2)0.06112 (14)0.33509 (11)0.0358 (7)
N70.5555 (3)0.09307 (15)0.30382 (11)0.0394 (7)
N80.6909 (3)0.16608 (17)0.30793 (13)0.0555 (9)
H810.73530.19090.32460.067*
H820.69360.16490.27500.067*
N90.6399 (4)0.2399 (2)0.58076 (14)0.0683 (12)
N100.5250 (4)0.1525 (2)0.55530 (14)0.0735 (13)
N110.5158 (3)0.09809 (17)0.47568 (12)0.0497 (8)
N120.7496 (3)0.35269 (18)0.52272 (13)0.0509 (9)
N130.7622 (4)0.3993 (2)0.43995 (14)0.0799 (15)
N140.8717 (3)0.48903 (18)0.41363 (13)0.0539 (9)
C10.9380 (4)0.2496 (2)0.54957 (17)0.0673 (14)
H10.91310.26110.51800.081*
C21.0297 (5)0.2132 (3)0.5532 (2)0.0814 (18)
H21.06580.19980.52460.098*
C31.0669 (5)0.1972 (2)0.6000 (2)0.0747 (16)
H31.13050.17410.60350.090*
C41.0095 (4)0.2154 (2)0.64189 (17)0.0546 (11)
H41.03260.20390.67370.066*
C50.9172 (3)0.25110 (17)0.63568 (14)0.0419 (9)
C60.8486 (3)0.27313 (16)0.67749 (13)0.0360 (8)
C70.8605 (3)0.24717 (17)0.72905 (13)0.0384 (8)
C80.7886 (4)0.2016 (2)0.74534 (17)0.0546 (11)
H80.73210.18900.72470.066*
C90.8002 (5)0.1745 (2)0.7924 (2)0.0696 (14)
H90.75190.14360.80320.084*
C100.8835 (5)0.1935 (3)0.82286 (19)0.0758 (16)
H100.89090.17580.85460.091*
C110.9552 (5)0.2379 (3)0.80682 (19)0.0831 (17)
H111.01190.25040.82750.100*
C120.9440 (4)0.2645 (2)0.76020 (17)0.0653 (13)
H120.99370.29470.74940.078*
C130.6370 (3)0.37643 (18)0.66655 (14)0.0427 (9)
C140.3281 (4)0.0096 (2)0.44722 (15)0.0527 (11)
H140.34840.00400.47900.063*
C150.2455 (4)0.0522 (3)0.44297 (19)0.0741 (16)
H150.20980.06710.47130.089*
C160.2161 (5)0.0725 (3)0.3959 (2)0.0832 (18)
H160.16020.10160.39200.100*
C170.2703 (4)0.0494 (2)0.35449 (17)0.0626 (13)
H170.25130.06270.32250.075*
C180.3520 (3)0.00673 (18)0.36126 (13)0.0403 (8)
C190.4168 (3)0.02092 (17)0.32052 (13)0.0368 (8)
C200.4045 (3)0.00038 (17)0.26745 (13)0.0369 (8)
C210.3209 (4)0.0214 (2)0.23788 (15)0.0562 (11)
H210.26970.04920.25080.067*
C220.3144 (4)0.0011 (3)0.18867 (17)0.0664 (13)
H220.25800.01540.16870.080*
C230.3888 (4)0.0392 (2)0.16898 (16)0.0644 (14)
H230.38440.05140.13560.077*
C240.4709 (4)0.0618 (2)0.19901 (19)0.0647 (14)
H240.52070.09060.18620.078*
C250.4789 (4)0.0417 (2)0.24776 (17)0.0521 (10)
H250.53540.05620.26760.062*
C260.6197 (3)0.13029 (17)0.33247 (14)0.0409 (9)
C270.5897 (4)0.1987 (2)0.56680 (14)0.0471 (10)
C280.5253 (3)0.12554 (19)0.51235 (14)0.0447 (9)
C290.7585 (3)0.3768 (2)0.48527 (16)0.0483 (10)
C300.8225 (3)0.4478 (2)0.42797 (13)0.0455 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0501 (3)0.0411 (3)0.0272 (2)0.00041 (19)0.00001 (19)0.00053 (18)
Cu20.0476 (3)0.0394 (3)0.0245 (2)0.0023 (2)0.00390 (18)0.00204 (17)
O10.070 (2)0.0597 (18)0.0327 (14)0.0195 (15)0.0050 (13)0.0012 (12)
O20.0662 (19)0.0471 (16)0.0334 (14)0.0157 (14)0.0080 (13)0.0001 (11)
O1W0.220 (9)0.323 (11)0.266 (10)0.038 (8)0.025 (8)0.002 (8)
O2W0.247 (10)0.253 (11)0.201 (8)0.037 (8)0.069 (8)0.052 (8)
O1W'0.220 (9)0.323 (11)0.266 (10)0.038 (8)0.025 (8)0.002 (8)
O2W'0.247 (10)0.253 (11)0.201 (8)0.037 (8)0.069 (8)0.052 (8)
N10.059 (2)0.0457 (18)0.0354 (17)0.0038 (16)0.0107 (15)0.0022 (14)
N20.0452 (18)0.0354 (16)0.0281 (14)0.0019 (14)0.0007 (13)0.0020 (12)
N30.046 (2)0.0472 (18)0.0323 (16)0.0081 (15)0.0028 (14)0.0045 (14)
N40.075 (3)0.078 (3)0.0401 (19)0.036 (2)0.0021 (18)0.0022 (18)
N50.0458 (19)0.0448 (17)0.0282 (15)0.0011 (14)0.0010 (13)0.0004 (13)
N60.0418 (18)0.0395 (17)0.0261 (14)0.0010 (13)0.0031 (12)0.0002 (12)
N70.0487 (19)0.0429 (17)0.0266 (14)0.0060 (15)0.0046 (13)0.0028 (13)
N80.070 (3)0.054 (2)0.0427 (19)0.0245 (19)0.0014 (17)0.0026 (16)
N90.090 (3)0.063 (2)0.052 (2)0.027 (2)0.001 (2)0.0150 (19)
N100.097 (3)0.082 (3)0.041 (2)0.045 (3)0.021 (2)0.029 (2)
N110.062 (2)0.055 (2)0.0321 (17)0.0067 (17)0.0025 (15)0.0054 (15)
N120.058 (2)0.056 (2)0.0389 (19)0.0099 (17)0.0001 (16)0.0063 (16)
N130.100 (3)0.096 (3)0.043 (2)0.056 (3)0.028 (2)0.030 (2)
N140.061 (2)0.058 (2)0.0425 (19)0.0145 (19)0.0045 (17)0.0155 (16)
C10.089 (4)0.068 (3)0.044 (2)0.022 (3)0.027 (2)0.007 (2)
C20.101 (4)0.084 (4)0.060 (3)0.041 (3)0.036 (3)0.007 (3)
C30.079 (4)0.069 (3)0.076 (4)0.035 (3)0.031 (3)0.011 (3)
C40.062 (3)0.051 (2)0.051 (3)0.012 (2)0.007 (2)0.009 (2)
C50.050 (2)0.0348 (19)0.041 (2)0.0007 (17)0.0088 (17)0.0028 (15)
C60.043 (2)0.0308 (17)0.0345 (18)0.0025 (16)0.0010 (15)0.0002 (14)
C70.043 (2)0.0394 (19)0.0326 (18)0.0044 (16)0.0035 (16)0.0042 (15)
C80.062 (3)0.047 (2)0.056 (3)0.007 (2)0.004 (2)0.005 (2)
C90.079 (4)0.056 (3)0.074 (3)0.002 (3)0.023 (3)0.020 (3)
C100.088 (4)0.089 (4)0.051 (3)0.012 (3)0.002 (3)0.034 (3)
C110.081 (4)0.121 (5)0.048 (3)0.013 (4)0.019 (3)0.025 (3)
C120.064 (3)0.085 (3)0.047 (2)0.025 (3)0.011 (2)0.016 (2)
C130.051 (2)0.042 (2)0.035 (2)0.0092 (18)0.0012 (17)0.0034 (16)
C140.059 (3)0.065 (3)0.033 (2)0.002 (2)0.0065 (19)0.0007 (18)
C150.066 (3)0.106 (4)0.051 (3)0.023 (3)0.011 (2)0.014 (3)
C160.071 (4)0.118 (5)0.061 (3)0.043 (3)0.003 (3)0.013 (3)
C170.064 (3)0.082 (3)0.042 (2)0.032 (3)0.006 (2)0.003 (2)
C180.042 (2)0.048 (2)0.0305 (18)0.0046 (17)0.0027 (15)0.0003 (15)
C190.042 (2)0.0369 (19)0.0314 (18)0.0001 (16)0.0041 (15)0.0008 (14)
C200.042 (2)0.0375 (19)0.0307 (18)0.0070 (16)0.0029 (15)0.0030 (14)
C210.059 (3)0.071 (3)0.038 (2)0.011 (2)0.011 (2)0.008 (2)
C220.076 (3)0.084 (3)0.039 (2)0.002 (3)0.023 (2)0.008 (2)
C230.086 (4)0.074 (3)0.034 (2)0.028 (3)0.004 (2)0.019 (2)
C240.071 (3)0.055 (3)0.069 (3)0.007 (2)0.020 (3)0.032 (2)
C250.053 (3)0.054 (3)0.049 (2)0.001 (2)0.003 (2)0.007 (2)
C260.050 (2)0.037 (2)0.0356 (19)0.0002 (17)0.0006 (17)0.0036 (16)
C270.060 (3)0.053 (2)0.0280 (18)0.007 (2)0.0055 (18)0.0048 (17)
C280.052 (2)0.049 (2)0.033 (2)0.0117 (19)0.0037 (17)0.0062 (17)
C290.047 (2)0.054 (2)0.043 (2)0.0148 (19)0.0113 (18)0.0046 (19)
C300.050 (2)0.062 (3)0.0252 (18)0.008 (2)0.0133 (17)0.0066 (17)
Geometric parameters (Å, º) top
Cu1—N21.946 (3)C1—H10.9300
Cu1—N121.955 (3)C2—C31.376 (7)
Cu1—O11.966 (3)C2—H20.9300
Cu1—N12.004 (4)C3—C41.380 (6)
Cu1—N92.205 (4)C3—H30.9300
Cu2—N61.940 (3)C4—C51.377 (6)
Cu2—N111.941 (3)C4—H40.9300
Cu2—O21.977 (3)C5—C61.479 (5)
Cu2—N52.016 (3)C6—C71.488 (5)
Cu2—N14i2.228 (4)C7—C81.378 (6)
O1—C131.278 (4)C7—C121.378 (6)
O2—C261.281 (4)C8—C91.387 (7)
O1W—H1W10.8401C8—H80.9300
O1W—H1W20.8401C9—C101.375 (8)
O2W—H2W10.8400C9—H90.9300
O2W—H2W20.8400C10—C111.359 (8)
N1—C11.333 (5)C10—H100.9300
N1—C51.346 (5)C11—C121.371 (6)
N2—C61.292 (5)C11—H110.9300
N2—N31.358 (4)C12—H120.9300
N3—C131.349 (5)C14—C151.364 (7)
N4—C131.334 (5)C14—H140.9300
N4—H410.8800C15—C161.377 (7)
N4—H420.8800C15—H150.9300
N5—C141.331 (5)C16—C171.383 (7)
N5—C181.356 (4)C16—H160.9300
N6—C191.284 (5)C17—C181.365 (6)
N6—N71.358 (4)C17—H170.9300
N7—C261.353 (5)C18—C191.472 (5)
N8—C261.332 (5)C19—C201.494 (5)
N8—H810.8800C20—C251.372 (6)
N8—H820.8800C20—C211.381 (6)
N9—C271.129 (5)C21—C221.384 (6)
N10—C281.280 (5)C21—H210.9300
N10—C271.296 (6)C22—C231.358 (7)
N11—C281.143 (5)C22—H220.9300
N12—C291.127 (5)C23—C241.381 (7)
N13—C291.300 (5)C23—H230.9300
N13—C301.303 (6)C24—C251.372 (6)
N14—C301.127 (5)C24—H240.9300
N14—Cu2ii2.228 (4)C25—H250.9300
C1—C21.372 (7)
N2—Cu1—N12163.76 (14)N2—C6—C7125.0 (3)
N2—Cu1—O179.14 (12)C5—C6—C7121.8 (3)
N12—Cu1—O197.91 (14)C8—C7—C12118.6 (4)
N2—Cu1—N180.51 (13)C8—C7—C6118.8 (4)
N12—Cu1—N199.07 (14)C12—C7—C6122.4 (4)
O1—Cu1—N1157.69 (13)C7—C8—C9120.3 (5)
N2—Cu1—N998.30 (14)C7—C8—H8119.9
N12—Cu1—N997.91 (15)C9—C8—H8119.9
O1—Cu1—N997.52 (15)C10—C9—C8119.6 (5)
N1—Cu1—N994.37 (16)C10—C9—H9120.2
N6—Cu2—N11165.22 (14)C8—C9—H9120.2
N6—Cu2—O279.29 (12)C11—C10—C9120.3 (4)
N11—Cu2—O296.58 (13)C11—C10—H10119.8
N6—Cu2—N580.58 (12)C9—C10—H10119.8
N11—Cu2—N5100.68 (13)C10—C11—C12120.0 (5)
O2—Cu2—N5158.01 (11)C10—C11—H11120.0
N6—Cu2—N14i96.54 (13)C12—C11—H11120.0
N11—Cu2—N14i98.04 (14)C11—C12—C7121.1 (4)
O2—Cu2—N14i96.66 (13)C11—C12—H12119.5
N5—Cu2—N14i94.34 (14)C7—C12—H12119.5
C13—O1—Cu1110.4 (2)O1—C13—N4118.9 (4)
C26—O2—Cu2110.4 (2)O1—C13—N3125.2 (3)
H1W1—O1W—H1W2108.7N4—C13—N3115.9 (3)
H2W1—O2W—H2W2107.9N5—C14—C15122.6 (4)
C1—N1—C5119.4 (4)N5—C14—H14118.7
C1—N1—Cu1127.6 (3)C15—C14—H14118.7
C5—N1—Cu1112.9 (3)C14—C15—C16118.6 (4)
C6—N2—N3124.0 (3)C14—C15—H15120.7
C6—N2—Cu1117.9 (2)C16—C15—H15120.7
N3—N2—Cu1117.5 (2)C15—C16—C17119.5 (5)
C13—N3—N2106.8 (3)C15—C16—H16120.3
C13—N4—H41120.0C17—C16—H16120.3
C13—N4—H42120.0C18—C17—C16119.1 (4)
H41—N4—H42120.0C18—C17—H17120.5
C14—N5—C18119.1 (4)C16—C17—H17120.5
C14—N5—Cu2128.3 (3)N5—C18—C17121.2 (4)
C18—N5—Cu2112.3 (2)N5—C18—C19114.2 (3)
C19—N6—N7124.2 (3)C17—C18—C19124.5 (3)
C19—N6—Cu2117.7 (2)N6—C19—C18114.3 (3)
N7—N6—Cu2117.7 (2)N6—C19—C20123.7 (3)
C26—N7—N6107.4 (3)C18—C19—C20121.8 (3)
C26—N8—H81120.0C25—C20—C21119.7 (4)
C26—N8—H82120.0C25—C20—C19119.0 (3)
H81—N8—H82120.0C21—C20—C19121.4 (3)
C27—N9—Cu1168.1 (4)C20—C21—C22119.0 (4)
C28—N10—C27122.9 (4)C20—C21—H21120.5
C28—N11—Cu2166.7 (3)C22—C21—H21120.5
C29—N12—Cu1170.9 (4)C23—C22—C21121.4 (5)
C29—N13—C30122.2 (4)C23—C22—H22119.3
C30—N14—Cu2ii164.2 (3)C21—C22—H22119.3
N1—C1—C2122.2 (5)C22—C23—C24119.4 (4)
N1—C1—H1118.9C22—C23—H23120.3
C2—C1—H1118.9C24—C23—H23120.3
C1—C2—C3118.5 (4)C25—C24—C23119.9 (4)
C1—C2—H2120.7C25—C24—H24120.1
C3—C2—H2120.7C23—C24—H24120.1
C2—C3—C4119.7 (5)C20—C25—C24120.7 (4)
C2—C3—H3120.1C20—C25—H25119.7
C4—C3—H3120.1C24—C25—H25119.7
C5—C4—C3118.8 (4)O2—C26—N8119.4 (4)
C5—C4—H4120.6O2—C26—N7124.6 (3)
C3—C4—H4120.6N8—C26—N7116.0 (3)
N1—C5—C4121.2 (4)N9—C27—N10173.3 (5)
N1—C5—C6114.9 (3)N11—C28—N10172.7 (5)
C4—C5—C6123.9 (4)N12—C29—N13173.4 (5)
N2—C6—C5112.9 (3)N14—C30—N13174.2 (4)
N2—Cu1—O1—C137.3 (3)C3—C4—C5—N10.8 (7)
N12—Cu1—O1—C13171.1 (3)C3—C4—C5—C6179.6 (4)
N1—Cu1—O1—C1331.8 (5)N3—N2—C6—C5178.4 (3)
N9—Cu1—O1—C1389.8 (3)Cu1—N2—C6—C510.5 (4)
N6—Cu2—O2—C265.6 (3)N3—N2—C6—C77.6 (6)
N11—Cu2—O2—C26171.2 (3)Cu1—N2—C6—C7163.6 (3)
N5—Cu2—O2—C2629.6 (5)N1—C5—C6—N27.2 (5)
N14i—Cu2—O2—C2689.9 (3)C4—C5—C6—N2172.5 (4)
N2—Cu1—N1—C1178.0 (4)N1—C5—C6—C7167.1 (3)
N12—Cu1—N1—C114.5 (4)C4—C5—C6—C713.2 (6)
O1—Cu1—N1—C1153.6 (4)N2—C6—C7—C872.8 (5)
N9—Cu1—N1—C184.3 (4)C5—C6—C7—C8100.8 (5)
N2—Cu1—N1—C53.5 (3)N2—C6—C7—C12110.7 (5)
N12—Cu1—N1—C5167.1 (3)C5—C6—C7—C1275.7 (5)
O1—Cu1—N1—C528.0 (5)C12—C7—C8—C90.6 (7)
N9—Cu1—N1—C594.2 (3)C6—C7—C8—C9177.3 (4)
N12—Cu1—N2—C698.0 (5)C7—C8—C9—C100.3 (7)
O1—Cu1—N2—C6178.9 (3)C8—C9—C10—C110.9 (9)
N1—Cu1—N2—C68.1 (3)C9—C10—C11—C120.6 (9)
N9—Cu1—N2—C684.9 (3)C10—C11—C12—C70.4 (9)
N12—Cu1—N2—N390.3 (6)C8—C7—C12—C111.0 (8)
O1—Cu1—N2—N39.4 (3)C6—C7—C12—C11177.5 (5)
N1—Cu1—N2—N3179.8 (3)Cu1—O1—C13—N4175.2 (3)
N9—Cu1—N2—N386.8 (3)Cu1—O1—C13—N35.1 (5)
C6—N2—N3—C13180.0 (3)N2—N3—C13—O12.2 (5)
Cu1—N2—N3—C138.9 (4)N2—N3—C13—N4177.5 (4)
N6—Cu2—N5—C14179.3 (4)C18—N5—C14—C150.4 (7)
N11—Cu2—N5—C1414.2 (4)Cu2—N5—C14—C15173.8 (4)
O2—Cu2—N5—C14155.3 (3)N5—C14—C15—C160.4 (9)
N14i—Cu2—N5—C1484.8 (4)C14—C15—C16—C170.2 (10)
N6—Cu2—N5—C186.9 (3)C15—C16—C17—C180.0 (9)
N11—Cu2—N5—C18172.0 (3)C14—N5—C18—C170.2 (6)
O2—Cu2—N5—C1830.9 (5)Cu2—N5—C18—C17174.7 (4)
N14i—Cu2—N5—C1889.0 (3)C14—N5—C18—C19179.1 (4)
N11—Cu2—N6—C19104.8 (6)Cu2—N5—C18—C194.7 (4)
O2—Cu2—N6—C19179.8 (3)C16—C17—C18—N50.0 (8)
N5—Cu2—N6—C198.7 (3)C16—C17—C18—C19179.2 (5)
N14i—Cu2—N6—C1984.7 (3)N7—N6—C19—C18178.9 (3)
N11—Cu2—N6—N782.0 (6)Cu2—N6—C19—C188.4 (4)
O2—Cu2—N6—N77.0 (2)N7—N6—C19—C205.5 (6)
N5—Cu2—N6—N7178.1 (3)Cu2—N6—C19—C20167.3 (3)
N14i—Cu2—N6—N788.5 (3)N5—C18—C19—N62.1 (5)
C19—N6—N7—C26179.3 (3)C17—C18—C19—N6178.6 (4)
Cu2—N6—N7—C266.6 (4)N5—C18—C19—C20173.7 (3)
N2—Cu1—N9—C27157 (2)C17—C18—C19—C205.7 (6)
N12—Cu1—N9—C2724 (2)N6—C19—C20—C2574.0 (5)
O1—Cu1—N9—C27123 (2)C18—C19—C20—C25101.3 (4)
N1—Cu1—N9—C2776 (2)N6—C19—C20—C21105.0 (5)
N6—Cu2—N11—C2852.0 (19)C18—C19—C20—C2179.7 (5)
O2—Cu2—N11—C2820.8 (16)C25—C20—C21—C220.3 (7)
N5—Cu2—N11—C28145.5 (16)C19—C20—C21—C22178.7 (4)
N14i—Cu2—N11—C28118.5 (16)C20—C21—C22—C230.5 (8)
C5—N1—C1—C21.6 (8)C21—C22—C23—C241.8 (8)
Cu1—N1—C1—C2179.9 (4)C22—C23—C24—C252.3 (7)
N1—C1—C2—C31.0 (9)C21—C20—C25—C240.3 (6)
C1—C2—C3—C42.7 (9)C19—C20—C25—C24179.3 (4)
C2—C3—C4—C51.8 (8)C23—C24—C25—C201.6 (7)
C1—N1—C5—C42.5 (6)Cu2—O2—C26—N8175.3 (3)
Cu1—N1—C5—C4179.0 (3)Cu2—O2—C26—N74.0 (5)
C1—N1—C5—C6177.8 (4)N6—N7—C26—O21.5 (5)
Cu1—N1—C5—C60.7 (4)N6—N7—C26—N8179.2 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H42···N7iii0.882.133.006 (5)176
N8—H82···N3iv0.882.153.025 (5)179
O1w—H1w1···O10.842.052.88 (2)169
O2w—H2w1···O20.842.343.151 (19)161
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H42···N7i0.882.133.006 (5)175.6
N8—H82···N3ii0.882.153.025 (5)178.9
O1w—H1w1···O10.842.052.88 (2)168.9
O2w—H2w1···O20.842.343.151 (19)161.0
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Acknowledgements top

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Lima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, o177.

Peŕez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18–23.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.