supplementary materials


xu5602 scheme

Acta Cryst. (2012). E68, m1171    [ doi:10.1107/S1600536812034769 ]

catena-Poly[[silver(I)-[mu]-2-[(pyrazin-2-yl-[kappa]2N1:N4)aminomethyl]phenol] nitrate]

Z.-P. Deng, S. Gao and S. W. Ng

Abstract top

The AgI atom in the polycationic salt, {[Ag(C11H11N3O)]NO3}n, shows a linear coordination [N-Ag-N = 175.0 (2)°]; the polymeric nature arises from bridging by the pyrazine portion of the ligand, resulting in chains extending parallel to [100]. The NO3- counter-ions surround the polymeric chain and interact only weakly with it [Ag...O = 2.701 (4) and 2.810 (5) Å]. Adjacent chains are linked into a three-dimensional network by O-H...O and N-H...O hydrogen bonds.

Comment top

A recent study reports 2-[(pyrazin-2-ylamino)methyl]phenol, a reduced Schiff-base that possesses an acidic phenolic group (Gao & Ng, 2012). The reaction with silver nitrate yields polycationic [Ag(C11H11N3O)]n nNO3 (Scheme I). The polymeric nature arises from bridging by the pyrazine portion of the ligand. The counterions surround the chain and interact only weakly with it [Ag···O 2.701 (4), 2.810 (5) Å] (Fig. 1). Adjacent chains are linked into a three-dimensional network by O–H···O and N–H···O hydrogen bonds (Table 1).

Related literature top

For the structure of 2-{[(pyrazin-2-yl)amino]methyl}phenol, see: Gao & Ng (2012).

Experimental top

An acetonitrile solution (10 ml) of silver nitrate (1 mmol) was added to a methanol solution (5 ml) of 2-[(pyrazin-2-ylamino)methyl]phenol (1 mmol). The solution was filtered and then side aside, away from light, for the growth of crystals. Colorless crystals were obtained after several days.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, N–H 0.88, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,N,O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the polymeric chain structure of [Ag(C11H11N3O)]nNO3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
catena-Poly[[silver(I)-µ-2-[(pyrazin-2-yl- κ2N1:N4)aminomethyl]phenol] nitrate] top
Crystal data top
[Ag(C11H11N3O)]NO3F(000) = 736
Mr = 371.11Dx = 1.962 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5867 reflections
a = 7.1265 (9) Åθ = 3.1–27.5°
b = 9.5249 (14) ŵ = 1.63 mm1
c = 18.654 (2) ÅT = 293 K
β = 97.240 (4)°Prism, colorless
V = 1256.1 (3) Å30.27 × 0.18 × 0.13 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2864 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.668, Tmax = 0.817k = 1212
11969 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0508P)2 + 4.1394P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ag(C11H11N3O)]NO3V = 1256.1 (3) Å3
Mr = 371.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1265 (9) ŵ = 1.63 mm1
b = 9.5249 (14) ÅT = 293 K
c = 18.654 (2) Å0.27 × 0.18 × 0.13 mm
β = 97.240 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2038 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.817Rint = 0.042
11969 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.64 e Å3
S = 1.02Δρmin = 0.77 e Å3
2864 reflectionsAbsolute structure: ?
182 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.06666 (5)0.59659 (5)0.58246 (2)0.05110 (18)
O10.3023 (5)0.4649 (5)0.8136 (2)0.0571 (10)
H10.25820.52910.83750.086*
O20.0170 (6)0.6917 (5)0.4458 (2)0.0575 (11)
O30.1837 (5)0.8322 (5)0.4064 (2)0.0574 (11)
O40.0257 (6)0.7272 (6)0.3321 (2)0.0658 (12)
N10.3716 (5)0.5848 (4)0.5842 (2)0.0316 (8)
N20.7616 (5)0.5983 (4)0.5896 (2)0.0361 (9)
N30.4029 (6)0.4097 (5)0.6707 (2)0.0434 (10)
H30.27850.40810.66610.052*
N40.0450 (6)0.7509 (5)0.3943 (2)0.0414 (10)
C10.4556 (6)0.6685 (5)0.5406 (3)0.0352 (10)
H1A0.38040.72450.50780.042*
C20.6473 (7)0.6755 (5)0.5421 (3)0.0397 (11)
H20.69930.73410.51000.048*
C30.6828 (6)0.5159 (6)0.6338 (3)0.0368 (11)
H3A0.75990.46480.66830.044*
C40.4845 (6)0.5027 (5)0.6304 (2)0.0328 (10)
C50.5036 (8)0.3108 (6)0.7217 (3)0.0442 (12)
H5A0.60010.26420.69800.053*
H5B0.41510.23950.73330.053*
C60.5967 (7)0.3745 (5)0.7914 (3)0.0371 (11)
C70.7896 (7)0.3554 (6)0.8134 (3)0.0451 (12)
H70.86250.30620.78390.054*
C80.8733 (8)0.4086 (6)0.8783 (3)0.0510 (14)
H81.00160.39410.89260.061*
C90.7677 (8)0.4832 (7)0.9221 (3)0.0529 (14)
H90.82470.51920.96580.063*
C100.5791 (8)0.5042 (6)0.9013 (3)0.0472 (13)
H100.50820.55520.93080.057*
C110.4926 (7)0.4498 (6)0.8363 (3)0.0404 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0201 (2)0.0684 (3)0.0657 (3)0.00250 (18)0.00874 (18)0.0059 (2)
O10.039 (2)0.071 (3)0.062 (3)0.008 (2)0.0080 (19)0.008 (2)
O20.050 (2)0.066 (3)0.059 (2)0.000 (2)0.018 (2)0.015 (2)
O30.039 (2)0.064 (3)0.067 (3)0.0142 (19)0.0030 (19)0.011 (2)
O40.048 (2)0.102 (4)0.047 (2)0.010 (2)0.0027 (19)0.012 (2)
N10.0186 (16)0.038 (2)0.038 (2)0.0005 (15)0.0023 (15)0.0005 (17)
N20.0183 (16)0.044 (2)0.046 (2)0.0003 (16)0.0028 (16)0.0007 (19)
N30.028 (2)0.059 (3)0.043 (2)0.006 (2)0.0052 (18)0.010 (2)
N40.028 (2)0.046 (3)0.050 (3)0.0013 (18)0.0086 (19)0.002 (2)
C10.024 (2)0.035 (3)0.047 (3)0.0019 (19)0.005 (2)0.004 (2)
C20.029 (2)0.041 (3)0.050 (3)0.002 (2)0.012 (2)0.008 (2)
C30.022 (2)0.048 (3)0.041 (3)0.005 (2)0.0058 (19)0.002 (2)
C40.025 (2)0.041 (3)0.034 (2)0.0041 (19)0.0101 (18)0.007 (2)
C50.042 (3)0.046 (3)0.045 (3)0.002 (2)0.010 (2)0.003 (2)
C60.038 (2)0.036 (3)0.039 (3)0.001 (2)0.009 (2)0.007 (2)
C70.038 (3)0.047 (3)0.051 (3)0.005 (2)0.013 (2)0.014 (3)
C80.035 (3)0.049 (3)0.067 (4)0.002 (2)0.002 (3)0.014 (3)
C90.052 (3)0.053 (4)0.051 (3)0.008 (3)0.005 (3)0.003 (3)
C100.052 (3)0.046 (3)0.044 (3)0.002 (3)0.010 (3)0.006 (2)
C110.035 (2)0.040 (3)0.047 (3)0.001 (2)0.007 (2)0.005 (2)
Geometric parameters (Å, º) top
Ag1—N12.172 (4)C1—H1A0.9300
Ag1—N2i2.195 (4)C2—H20.9300
Ag1—O22.701 (4)C3—C41.412 (6)
Ag1—O2ii2.810 (5)C3—H3A0.9300
O1—C111.376 (6)C5—C61.511 (7)
O1—H10.8400C5—H5A0.9700
O2—N41.242 (6)C5—H5B0.9700
O3—N41.254 (6)C6—C71.396 (7)
O4—N41.225 (6)C6—C111.386 (7)
N1—C11.333 (6)C7—C81.377 (8)
N1—C41.352 (6)C7—H70.9300
N2—C31.314 (6)C8—C91.376 (9)
N2—C21.344 (6)C8—H80.9300
N2—Ag1iii2.195 (4)C9—C101.366 (8)
N3—C41.342 (6)C9—H90.9300
N3—C51.461 (7)C10—C111.390 (8)
N3—H30.8800C10—H100.9300
C1—C21.364 (6)
N1—Ag1—N2i175.01 (15)C4—C3—H3A119.0
N1—Ag1—O297.63 (13)N1—C4—N3118.3 (4)
N2i—Ag1—O287.27 (14)N1—C4—C3119.3 (4)
N1—Ag1—O2ii93.12 (13)N3—C4—C3122.4 (5)
N2i—Ag1—O2ii85.21 (14)N3—C5—C6115.3 (4)
O2—Ag1—O2ii98.24 (12)N3—C5—H5A108.5
C11—O1—H1109.5C6—C5—H5A108.5
N4—O2—Ag1145.6 (3)N3—C5—H5B108.5
C1—N1—C4117.2 (4)C6—C5—H5B108.5
C1—N1—Ag1119.1 (3)H5A—C5—H5B107.5
C4—N1—Ag1123.6 (3)C7—C6—C11118.1 (5)
C3—N2—C2117.9 (4)C7—C6—C5120.7 (5)
C3—N2—Ag1iii122.6 (3)C11—C6—C5121.2 (5)
C2—N2—Ag1iii119.1 (3)C6—C7—C8120.8 (5)
C4—N3—C5125.3 (4)C6—C7—H7119.6
C4—N3—H3117.3C8—C7—H7119.6
C5—N3—H3117.3C9—C8—C7120.2 (5)
O4—N4—O2120.3 (5)C9—C8—H8119.9
O4—N4—O3120.3 (5)C7—C8—H8119.9
O2—N4—O3119.4 (5)C8—C9—C10120.0 (5)
N1—C1—C2122.9 (5)C8—C9—H9120.0
N1—C1—H1A118.6C10—C9—H9120.0
C2—C1—H1A118.6C9—C10—C11120.3 (5)
C1—C2—N2120.6 (4)C9—C10—H10119.8
C1—C2—H2119.7C11—C10—H10119.8
N2—C2—H2119.7C6—C11—C10120.5 (5)
N2—C3—C4121.9 (4)C6—C11—O1116.7 (5)
N2—C3—H3A119.0C10—C11—O1122.7 (5)
N1—Ag1—O2—N419.9 (6)C5—N3—C4—N1178.2 (5)
N2i—Ag1—O2—N4161.0 (6)C5—N3—C4—C30.7 (8)
O2ii—Ag1—O2—N4114.2 (6)N2—C3—C4—N15.1 (7)
O2—Ag1—N1—C126.1 (4)N2—C3—C4—N3173.8 (5)
O2ii—Ag1—N1—C1124.9 (4)C4—N3—C5—C673.9 (6)
O2ii—Ag1—N1—C459.3 (4)N3—C5—C6—C7124.6 (5)
Ag1—O2—N4—O4152.0 (5)N3—C5—C6—C1157.3 (6)
Ag1—O2—N4—O326.1 (9)C11—C6—C7—C80.7 (8)
C4—N1—C1—C21.2 (7)C5—C6—C7—C8177.4 (5)
Ag1—N1—C1—C2174.9 (4)C6—C7—C8—C90.8 (8)
N1—C1—C2—N21.3 (8)C7—C8—C9—C100.2 (9)
C3—N2—C2—C10.5 (7)C8—C9—C10—C110.5 (9)
Ag1iii—N2—C2—C1173.7 (4)C7—C6—C11—C100.1 (8)
C2—N2—C3—C42.6 (7)C5—C6—C11—C10178.1 (5)
Ag1iii—N2—C3—C4170.3 (4)C7—C6—C11—O1179.0 (5)
C1—N1—C4—N3174.8 (4)C5—C6—C11—O10.9 (7)
Ag1—N1—C4—N39.2 (6)C9—C10—C11—C60.6 (8)
C1—N1—C4—C34.2 (7)C9—C10—C11—O1178.4 (5)
Ag1—N1—C4—C3171.8 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3iv0.841.962.795 (6)171
N3—H3···O4ii0.882.222.982 (6)145
Symmetry codes: (ii) x, y+1, z+1; (iv) x, y+3/2, z+1/2.
Selected bond lengths (Å) top
Ag1—N12.172 (4)Ag1—N2i2.195 (4)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3ii0.841.962.795 (6)171
N3—H3···O4iii0.882.222.982 (6)145
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1.
Acknowledgements top

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023, No. 2011CJHB006), the Innovation team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2472.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.