organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyrrolidine-2,5-dione

aAgronomy College, Sichuan Agricultural University, No. 211, Huiming Road, Wenjiang Region, Chengdu 611130, People's Republic of China
*Correspondence e-mail: gaofeng@sicau.edu.cn

(Received 5 August 2012; accepted 13 August 2012; online 23 August 2012)

In the title compound, C4H5NO2, the non-H atoms are nearly coplanar, with a maximum deviation of 0.030 (1) Å. In the crystal, pairs of mol­ecules are linked by N—H⋯O hydrogen bonds into inversion dimers.

Related literature

For the synthesis, see: Ilieva et al. (2012[Ilieva, E. D., Petkova, N. I. & Nikolova, R. D. (2012). Molecules, 17, 4936-4949.]); Adib et al. (2010[Adib, M., Ansari, A., Fatemi, S., Bijanzadeh, H. R. & Zhu, L. G. (2010). Tetrahedron, 66, 2723-2727.]). For the bioactivity of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2012[Obniska, J., Rzepka, S. & Kamiński, K. (2012). Bioorg. Med. Chem. 20, 4872-4880.]); Ha et al. (2011[Ha, Y. M., Kim, J., Parkl, Y. J., Park, D., Choi, Y. J., Kim, J. M., Chung, K. W., Han, Y. K., Park, J. Y., Lee, J. Y., Moon, H. R. & Chung, H. Y. (2011). Med. Chem. Commun. 2, 542-549.]); Kaminski et al. (2011[Kaminski, K., Rzepka, S. & Obniska, J. (2011). Bioorg. Med. Chem. Lett. 21, 5800-5803.]). For related structures, see: Khorasani & Fernandes (2012[Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1503.]); Mayes et al. (2008[Mayes, B. A., McGarry, P., Moussa, A. & Watkin, D. J. (2008). Acta Cryst. E64, o1355.]).

[Scheme 1]

Experimental

Crystal data
  • C4H5NO2

  • Mr = 99.09

  • Orthorhombic, P b c a

  • a = 7.3661 (4) Å

  • b = 9.5504 (5) Å

  • c = 12.8501 (7) Å

  • V = 904.00 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 135 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.911, Tmax = 1.000

  • 2022 measured reflections

  • 915 independent reflections

  • 732 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.05

  • 915 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.00 2.8548 (16) 176
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrrolidine-2,5-diones derivates are an important class of heterocylic compounds with essential applications in the organic synthesis and medicinal chemistry. In the organic field, pyrrolidine-2,5-diones derivates, such as well known 1-bromopyrrolidine-2,5-dione (NBS), are the most commonly used halogenation reagents. Meanwhile, pyrrolidine-2,5-diones derivates exhibit numerous bioactivity, especially in anticonvulsant (Obniska et al., 2012; Kaminski et al., 2011) and tyrosinase inhibitory activity (Ha et al., 2011). Therefore, development of new and efficient strategies for the synthesis of multi-substituted pyrrolidine-2,5-diones is also the current hot in organic and medical chemistry (Ilieva et al., 2012; Adib et al.. 2010). Several crystal structures of title compound derivates have been reported (Khorasani and Fernandes 2012; Mayes et al., 2008), but crystal data of pyrrolidine-2,5-dione has not been investigated. Herein, we report the synthesis and completely crystal data of title compound.

The molecular structure of pyrrolidine-2,5-dione is shown in Fig. 1. The bond lengths and angles are within normal ranges. In the crystal, the molecules are connected through intermolecular N–H···O hydrogen bond (Table 1).

Related literature top

For the sythesis, see: Ilieva et al. (2012); Adib et al. (2010). For the bioactiviy of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2012); Ha et al. (2011); Kaminski et al. (2011). For related structures, see: Khorasani & Fernandes (2012); Mayes et al. (2008).

Experimental top

The single crystals of pyrrolidine-2,5-dione, C4H5NO2, were recrystallized from acetone at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction, mounted inert oil and transferred to the cold gas stream of the diffractometer

Refinement top

C and N bound-H (atoms were included in idealized positions and refined using a riding-model approximation, with C—H bond lengths fixed at 1.00 Å, 0.99 Å, for methine and methylene H atoms respectively. Uiso(H) values were fixed at 1.2Ueq of the parent atoms for all H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. Plane-to-plane stacking of alternate molecules parallel to the α axis.
Pyrrolidine-2,5-dione top
Crystal data top
C4H5NO2F(000) = 416
Mr = 99.09Dx = 1.456 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ac 2abCell parameters from 806 reflections
a = 7.3661 (4) Åθ = 3.2–28.9°
b = 9.5504 (5) ŵ = 0.12 mm1
c = 12.8501 (7) ÅT = 135 K
V = 904.00 (8) Å3Block, colourless
Z = 80.40 × 0.35 × 0.30 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
915 independent reflections
Radiation source: Enhance (Mo) X-ray Source732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 116
Tmin = 0.911, Tmax = 1.000l = 1614
2022 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
915 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C4H5NO2V = 904.00 (8) Å3
Mr = 99.09Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.3661 (4) ŵ = 0.12 mm1
b = 9.5504 (5) ÅT = 135 K
c = 12.8501 (7) Å0.40 × 0.35 × 0.30 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
915 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
732 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 1.000Rint = 0.018
2022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
915 reflectionsΔρmin = 0.29 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04477 (16)0.61457 (13)0.39506 (9)0.0197 (3)
H10.07720.53170.41350.024*
O10.19664 (16)0.61963 (11)0.23948 (8)0.0291 (3)
O20.13630 (16)0.66055 (12)0.53572 (8)0.0312 (3)
C20.0226 (2)0.82282 (15)0.30007 (12)0.0211 (4)
H2A0.05460.83460.23950.025*
H2B0.11840.89240.29790.025*
C10.10102 (19)0.67648 (15)0.30357 (12)0.0197 (4)
C40.0668 (2)0.69665 (16)0.45340 (11)0.0204 (4)
C30.0874 (2)0.83593 (16)0.40006 (11)0.0230 (4)
H3A0.04030.91080.44340.028*
H3B0.21390.85490.38470.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0206 (6)0.0160 (6)0.0226 (7)0.0026 (5)0.0004 (5)0.0014 (5)
O10.0309 (6)0.0239 (6)0.0325 (6)0.0004 (5)0.0126 (5)0.0002 (5)
O20.0430 (7)0.0274 (6)0.0232 (6)0.0118 (6)0.0087 (6)0.0049 (5)
C20.0215 (7)0.0171 (7)0.0248 (8)0.0011 (6)0.0004 (6)0.0020 (6)
C10.0173 (7)0.0186 (8)0.0231 (7)0.0044 (6)0.0000 (6)0.0002 (6)
C40.0221 (7)0.0196 (7)0.0194 (8)0.0021 (6)0.0023 (6)0.0016 (6)
C30.0301 (8)0.0167 (7)0.0222 (8)0.0015 (7)0.0003 (7)0.0012 (6)
Geometric parameters (Å, º) top
N1—H10.8600C2—H2B0.9700
N1—C11.3796 (19)C2—C11.513 (2)
N1—C41.3609 (19)C2—C31.524 (2)
O1—C11.2121 (17)C4—C31.504 (2)
O2—C41.2246 (18)C3—H3A0.9700
C2—H2A0.9700C3—H3B0.9700
C1—N1—H1123.1O1—C1—C2127.99 (14)
C4—N1—H1123.1N1—C4—C3108.61 (12)
C4—N1—C1113.83 (13)O2—C4—N1124.48 (14)
H2A—C2—H2B108.9O2—C4—C3126.91 (14)
C1—C2—H2A110.8C2—C3—H3A110.8
C1—C2—H2B110.8C2—C3—H3B110.8
C1—C2—C3104.70 (12)C4—C3—C2104.96 (12)
C3—C2—H2A110.8C4—C3—H3A110.8
C3—C2—H2B110.8C4—C3—H3B110.8
N1—C1—C2107.85 (12)H3A—C3—H3B108.8
O1—C1—N1124.16 (14)
N1—C4—C3—C21.90 (16)C4—N1—C1—O1177.92 (14)
O2—C4—C3—C2178.47 (14)C4—N1—C1—C22.11 (16)
C1—N1—C4—O2177.78 (14)C3—C2—C1—N10.75 (15)
C1—N1—C4—C32.58 (17)C3—C2—C1—O1179.29 (15)
C1—C2—C3—C40.66 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.8548 (16)176
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H5NO2
Mr99.09
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)135
a, b, c (Å)7.3661 (4), 9.5504 (5), 12.8501 (7)
V3)904.00 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.911, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2022, 915, 732
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.05
No. of reflections915
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.29

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.8548 (16)175.5
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This project was supported by the Students Research Inter­est Training Plan of Sichuan Agricultural University (No. 2011102 to MY).

References

First citationAdib, M., Ansari, A., Fatemi, S., Bijanzadeh, H. R. & Zhu, L. G. (2010). Tetrahedron, 66, 2723–2727.  CSD CrossRef CAS
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationHa, Y. M., Kim, J., Parkl, Y. J., Park, D., Choi, Y. J., Kim, J. M., Chung, K. W., Han, Y. K., Park, J. Y., Lee, J. Y., Moon, H. R. & Chung, H. Y. (2011). Med. Chem. Commun. 2, 542–549.  Web of Science CrossRef CAS
First citationIlieva, E. D., Petkova, N. I. & Nikolova, R. D. (2012). Molecules, 17, 4936–4949.  Web of Science CSD CrossRef CAS PubMed
First citationKaminski, K., Rzepka, S. & Obniska, J. (2011). Bioorg. Med. Chem. Lett. 21, 5800–5803.  Web of Science CAS PubMed
First citationKhorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1503.  CSD CrossRef IUCr Journals
First citationMayes, B. A., McGarry, P., Moussa, A. & Watkin, D. J. (2008). Acta Cryst. E64, o1355.  Web of Science CSD CrossRef IUCr Journals
First citationObniska, J., Rzepka, S. & Kamiński, K. (2012). Bioorg. Med. Chem. 20, 4872–4880.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds