supplementary materials


xu5606 scheme

Acta Cryst. (2012). E68, m1196-m1197    [ doi:10.1107/S1600536812035647 ]

Poly[([mu]5-2,2'-bipyridine-5,5'-dicarboxylato)lead(II)]

M. Sertçelik, N. Çaylak Delibas, S. Çevik, H. Necefoglu and T. Hökelek

Abstract top

In the title polymeric compound, [Pb(C12H6N2O4)]n, the PbII cation, located on a mirror plane, is N,N'-chelated by a 2-2'-bipyridine-5,5'-dicarboxylate (bpdc) anion and is further coordinated by six O atoms from four carboxyl groups of bpdc anions in an irregular N2O6 geometry. The carboxylate groups bridge the PbII cations, forming a three-dimensional polymeric structure. The carboxylate group is twisted away from the attached pyridine ring by 11.4 (3)°.

Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972) the title compound was synthesized and its crystal structure is reported herein. In fact, in the synthesis we aimed to obtain a mixed complex of lead with nicotinic acid and DENA. But, the nicotinic acid molecules have been interacted to form 2-2'-bipyridine-5-5'-dicarboxylic (bpdc) acid in the hydrothermal synthesis media.

In the crystal structure of the polymeric title compound, (I), the PbII ion is chelated by the O atoms of the carboxylate groups and the nitrogen atoms from 2-2'-bipyridine-5,5'-dicarboxylato (bpdc)ligands (Fig. 1); the symmetry related PbII ions are bridged through the O atoms of the carboxyl groups and the nitrogen atoms of the bpdc ligands to form a 3-D polymeric structure (Fig. 2), in which the PbII ion is in an irregular eight-coordination geometry (Fig. 1).

The Pb–O bond lengths are ranged from 2.383 (5) and 2.860 (5) Å (Table 1) and the Pb atom is displaced out of the least-square plane of the carboxylate group (O1/C6/O2) by -1.5813 (1) Å. The Pb1···Pb1b distance [symmetry code: (b) x, 1 + y, z] is 4.1923 (3) Å (Fig. 1). In (I), the O1–Pb1–O2 and N1–Pb1–N1i [symmetry code: (i) -x, y, z] angles are 50.4 (2) and 52.7 (3) °, respectively.

The corresponding O–M–O (where M is a metal) angles are 51.10 (15)° and 51.95 (16)° in {[Pb(PEB)2(NA)].H2O}n (Hökelek et al., 2011), 51.09 (6)° and 51.71 (5)° in [Pb(PMB)2(NA)]n (Hökelek et al., 2010a), 55.96 (4)° and 53.78 (4)° in [Cd2(DMAB)4(NA)2(H2O)2] (Hökelek et al., 2010b), 52.91 (4)° and 53.96 (4)° in [Cd(FB)2(INA)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(MAB)2(INA)2].H2O (Hökelek et al., 2009d), 58.3 (3)° in [Zn2(DENA)2(HB)4].2H2O (Hökelek & Necefoğlu, 1996) [where NA, INA, DENA, HB, FB, MAB, PMB, PEB and DMAB are nicotinamide, isonicotinamide, N,N-diethylnicotinamide, 4-hydroxybenzoate, 4-formylbenzoate, 4-methylaminobenzoate, 4-methylbenzoate, 4-ethylbenzoate and 4-dimethylaminobenzoate, respectively] and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

The dihedral angle between the planar carboxylate group and the adjacent pyridine ring A (N1/C1–C5) is 11.44 (31)°.

Related literature top

For background to niacin, see: Krishnamachari (1974) and to N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d, 2010a,b, 2011).

Experimental top

The title compound was obtained after leaving a mixture of Pb(NO3)2 (0.33 g, 1 mmol), nicotinic acid, (NA), (0.24 g, 2 mmol), diethylnicotinamide, (DENA), (0.35 g, 2 mmol) and distilled water (5 ml) in a Teflon-lined autoclave at 433 K for 41 h.

Refinement top

The C-bound H-atoms were positioned geometrically with C—H = 0.95 Å, for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C). The highest residual electron density was found 0.89 Å from Pb1 and the deepest hole 0.93 Å from Pb1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms are generated by the symmetry operators: (b) x, 1 + y, z, (d) 1/2 - x, 1 - y, 1/2 + z, (f) -x, y, z, (g) -x, 1 + y, z, (l) -1/2 + x, 1 - y, 1/2 + z.
[Figure 2] Fig. 2. The polymeric structure. Pb atoms are generated by the symmetry operators: (a) x, -1 + y, z, (b) x, 1 + y, z, (c) 1/2 - x, 1 - y, -1/2 + z, (d) 1/2 - x, 1 - y, 1/2 + z, (h) 1 - x, y, z, (l) -1/2 + x, 1 - y, 1/2 + z.
Poly[(µ5-2,2'-bipyridine-5,5'-dicarboxylato)lead(II)] top
Crystal data top
[Pb(C12H6N2O4)]F(000) = 412
Mr = 449.39Dx = 2.558 Mg m3
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac -2Cell parameters from 8915 reflections
a = 13.6224 (3) Åθ = 2.5–28.5°
b = 4.1923 (2) ŵ = 14.47 mm1
c = 10.2180 (3) ÅT = 100 K
V = 583.54 (3) Å3Prism, colorless
Z = 20.32 × 0.18 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1542 independent reflections
Radiation source: fine-focus sealed tube1511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1817
Tmin = 0.055, Tmax = 0.235k = 55
9729 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0212P)2 + 3.443P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max < 0.001
S = 1.24Δρmax = 1.53 e Å3
1542 reflectionsΔρmin = 0.75 e Å3
90 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0097 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 728 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.497 (14)
Crystal data top
[Pb(C12H6N2O4)]V = 583.54 (3) Å3
Mr = 449.39Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 13.6224 (3) ŵ = 14.47 mm1
b = 4.1923 (2) ÅT = 100 K
c = 10.2180 (3) Å0.32 × 0.18 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1511 reflections with I > 2σ(I)
Tmin = 0.055, Tmax = 0.235Rint = 0.036
9729 measured reflectionsθmax = 28.5°
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.055Δρmax = 1.53 e Å3
S = 1.24Δρmin = 0.75 e Å3
1542 reflectionsAbsolute structure: Flack (1983), 728 Friedel pairs
90 parametersFlack parameter: 0.497 (14)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.00000.81379 (5)0.62430.00544 (10)
O10.3476 (4)0.2412 (13)0.9391 (5)0.0145 (9)
O20.3886 (3)0.6151 (12)1.0873 (4)0.0136 (9)
N10.0870 (4)0.7262 (14)0.8556 (5)0.0134 (11)
C10.1730 (4)0.5765 (15)0.8787 (5)0.0099 (11)
H10.19290.40750.82270.012*
C20.2338 (4)0.6648 (14)0.9835 (6)0.0091 (11)
C30.2044 (5)0.9052 (17)1.0680 (6)0.0138 (11)
H30.24460.96771.13950.017*
C40.1157 (5)1.0506 (17)1.0457 (6)0.0149 (12)
H40.09261.21171.10340.018*
C50.0596 (5)0.9597 (17)0.9373 (6)0.0160 (12)
C60.3296 (4)0.4896 (16)1.0016 (5)0.0127 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.00259 (13)0.00704 (13)0.00668 (12)0.0000.0000.00030 (19)
O10.009 (2)0.022 (2)0.013 (2)0.0027 (19)0.0030 (18)0.0058 (18)
O20.007 (2)0.018 (2)0.015 (2)0.0035 (17)0.0056 (13)0.0002 (15)
N10.009 (3)0.022 (3)0.009 (2)0.000 (2)0.001 (2)0.002 (2)
C10.009 (3)0.013 (3)0.008 (2)0.004 (2)0.0023 (19)0.004 (2)
C20.003 (3)0.014 (3)0.011 (3)0.001 (2)0.002 (2)0.0008 (19)
C30.010 (3)0.025 (3)0.006 (2)0.001 (3)0.000 (2)0.000 (3)
C40.010 (3)0.018 (3)0.017 (3)0.003 (2)0.001 (2)0.004 (2)
C50.012 (3)0.020 (3)0.016 (3)0.005 (2)0.002 (2)0.004 (2)
C60.003 (2)0.029 (4)0.006 (2)0.004 (2)0.0017 (18)0.006 (2)
Geometric parameters (Å, º) top
Pb1—O1i2.819 (5)C1—C21.403 (8)
Pb1—O2i2.383 (5)C1—H10.9500
Pb1—O2ii2.383 (5)C2—C31.386 (9)
Pb1—O2iii2.860 (5)C2—C61.509 (8)
Pb1—N12.669 (5)C3—C41.373 (9)
Pb1—N1iv2.669 (5)C3—H30.9500
O1—C61.245 (8)C4—C51.398 (9)
O2—Pb1v2.383 (5)C4—H40.9500
N1—C11.350 (8)C5—C5iv1.623 (13)
N1—C51.340 (9)C6—O21.300 (7)
O2ii—Pb1—O2i79.1 (2)C3—C2—C1119.8 (6)
O2i—Pb1—N1iv108.61 (16)C3—C2—C6121.8 (5)
O2ii—Pb1—N1108.61 (17)C2—C3—H3120.9
O2i—Pb1—N175.73 (16)C4—C3—C2118.3 (6)
O2ii—Pb1—N1iv75.73 (16)C4—C3—H3120.9
N1—Pb1—N1iv52.7 (3)C3—C4—C5119.4 (6)
C6—O2—Pb1v101.2 (4)C3—C4—H4120.3
C1—N1—Pb1127.2 (4)C5—C4—H4120.3
C5—N1—Pb1109.1 (4)N1—C5—C4122.7 (6)
C5—N1—C1118.2 (6)N1—C5—C5iv106.2 (4)
N1—C1—C2121.5 (6)C4—C5—C5iv123.1 (4)
N1—C1—H1119.2O1—C6—O2124.2 (6)
C2—C1—H1119.2O1—C6—C2120.9 (5)
C1—C2—C6118.4 (5)O2—C6—C2114.8 (6)
O2i—Pb1—N1—C119.7 (5)N1—C1—C2—C6179.0 (5)
O2ii—Pb1—N1—C192.8 (5)C1—C2—C3—C40.1 (10)
O2i—Pb1—N1—C5172.7 (5)C6—C2—C3—C4179.3 (6)
O2ii—Pb1—N1—C5114.2 (5)C1—C2—C6—O111.3 (9)
N1iv—Pb1—N1—C1147.1 (5)C1—C2—C6—O2169.9 (5)
N1iv—Pb1—N1—C559.9 (5)C3—C2—C6—O1167.9 (6)
Pb1—N1—C1—C2149.5 (5)C3—C2—C6—O210.9 (8)
C5—N1—C1—C21.3 (9)C2—C3—C4—C51.9 (10)
Pb1—N1—C5—C4156.5 (5)C3—C4—C5—N12.5 (11)
Pb1—N1—C5—C5iv53.8 (3)C3—C4—C5—C5iv147.0 (5)
C1—N1—C5—C40.8 (10)O1—C6—O2—Pb1v14.7 (7)
C1—N1—C5—C5iv150.5 (5)C2—C6—O2—Pb1v164.0 (4)
N1—C1—C2—C31.8 (9)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1/2, y+1, z1/2; (iii) x+1/2, y+2, z1/2; (iv) x, y, z; (v) x+1/2, y+1, z+1/2.
Selected bond lengths (Å) top
Pb1—O1i2.819 (5)Pb1—O2ii2.860 (5)
Pb1—O2i2.383 (5)Pb1—N12.669 (5)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+2, z1/2.
Acknowledgements top

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

references
References top

Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.

Hökelek, T., Dal, H., Tercan, B., Çimen, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m953–m954.

Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.

Hökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2010b). Acta Cryst. E66, m782–m783.

Hökelek, T., Tercan, B., Şahin, E., Aktaş, V. & Necefoğlu, H. (2011). Acta Cryst. E67, m1057–m1058.

Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.

Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.