supplementary materials


xu5611 scheme

Acta Cryst. (2012). E68, m1195    [ doi:10.1107/S1600536812035751 ]

Di-[mu]-azido-[kappa]4N1:N1'-bis({1-[(E)-phenyl(pyridin-2-yl-[kappa]N)methylidene]thiosemicarbazidato-[kappa]2N1,S}copper(II))

R. J. Kunnath, M. R. Prathapachandra Kurup and S. W. Ng

Abstract top

In the title compound, [Cu2(C13H11N4S)2(N3)2], the CuII cation is N,N',S-chelated by the deprotonated Schiff base ligand and is coordinated by the azide anion, while an N atom from an adjacent azide anion bridges the CuII cation at the apical position with a longer Cu-N distance of 2.533 (3) Å, completing the distorted N4S square-pyramidal coordination geometry. A pair of azide anions bridge the two CuII cations, forming a centrosymmetric binuclear molecule. In the crystal, the binuclear molecules are linked by an N-H...N hydrogen bond into a ribbon running along the a axis.

Comment top

2-Benzoylpyridine thiosemicarbazone (Casas et al., 2003) is a Schiff base that is capable of N,N',S-chelation to metal ions. The CuII atom in [Cu(N3)(C13H11N4S)]2 (Scheme I) is N,N',S-chelated by the deprotonated Schiff base, and it exists in a square pyramidal environment (Fig. 1). Two molecules are disposed about a center-of-inversion and the distance between the copper atom and their apical nitrogen atom of the other azide is 2.533 (3) Å. Adjacent inversion-related pairs of molecules are linked by an N–H···N hydrogen bond to form a ribbon running along the a-axis (Table 1).

Related literature top

For the structure of the parent Schiff base, see: Casas et al. (2003).

Experimental top

The Schiff base ligand by heating 2-benzoylpyridine (0.183 g,1 mmol) and thiosemicarbazide (0.091 g,1 mmol) for 3 h. Copper acetate hydrate (0.199 g,1 mmol) and sodium azide (0.065 g,1 mmol) was added and the solution heated for another 2 h. Dark green colored crystals were obtained from the cool solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms were located in a difference Fouier and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors tied by a factor of 1.2 times.

Omitted owing interference from the beam stop was (1 0 0).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Cu(N3)(C13H11N4S)]2 at the 570% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-µ-azido-κ4N1:N1'-bis({1-[(E)-phenyl(pyridin- 2-yl-κN)methylidene]thiosemicarbazidato- κ2N1,S}copper(II)) top
Crystal data top
[Cu2(C13H11N4S)2(N3)2]F(000) = 732
Mr = 721.78Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4663 reflections
a = 11.2462 (12) Åθ = 3.0–28.3°
b = 7.2344 (10) ŵ = 1.61 mm1
c = 18.519 (2) ÅT = 295 K
β = 96.653 (5)°Prism, dark green
V = 1496.5 (3) Å30.35 × 0.30 × 0.25 mm
Z = 2
Data collection top
Bruker Kappa APEXII
diffractometer
3747 independent reflections
Radiation source: fine-focus sealed tube2973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.604, Tmax = 0.690k = 99
13614 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1161P]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu2(C13H11N4S)2(N3)2]V = 1496.5 (3) Å3
Mr = 721.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.2462 (12) ŵ = 1.61 mm1
b = 7.2344 (10) ÅT = 295 K
c = 18.519 (2) Å0.35 × 0.30 × 0.25 mm
β = 96.653 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
2973 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.075
Tmin = 0.604, Tmax = 0.690θmax = 28.4°
13614 measured reflectionsStandard reflections: 0
3747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134Δρmax = 0.54 e Å3
S = 1.04Δρmin = 0.66 e Å3
3747 reflectionsAbsolute structure: ?
205 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40816 (2)0.66511 (5)0.521018 (15)0.03737 (14)
S10.31362 (6)0.55753 (11)0.61376 (3)0.0469 (2)
N10.24572 (17)0.7151 (3)0.47503 (10)0.0345 (4)
N20.14750 (19)0.6402 (3)0.50005 (12)0.0408 (5)
N30.0841 (2)0.4802 (5)0.59265 (14)0.0617 (8)
H10.023 (2)0.456 (6)0.5610 (15)0.074*
H20.101 (3)0.422 (5)0.6343 (12)0.074*
N40.44641 (18)0.8236 (3)0.43679 (11)0.0377 (5)
N50.5749 (2)0.6199 (4)0.55657 (12)0.0468 (6)
N60.6113 (2)0.5803 (4)0.61823 (13)0.0487 (6)
N70.6497 (3)0.5408 (5)0.67545 (14)0.0721 (9)
C10.1174 (2)0.8573 (3)0.37564 (12)0.0340 (5)
C20.0861 (3)0.7823 (4)0.30754 (14)0.0454 (6)
H2A0.14120.71090.28610.054*
C30.0264 (3)0.8127 (5)0.27110 (15)0.0506 (7)
H30.04700.76270.22510.061*
C40.1078 (2)0.9171 (5)0.30306 (16)0.0506 (7)
H40.18480.93390.27960.061*
C50.0752 (3)0.9963 (5)0.36967 (17)0.0556 (8)
H50.12941.07070.39060.067*
C60.0364 (2)0.9669 (4)0.40563 (14)0.0456 (6)
H60.05761.02160.45070.055*
C70.2345 (2)0.8130 (3)0.41657 (12)0.0335 (5)
C80.1738 (2)0.5609 (4)0.56389 (13)0.0414 (6)
C90.3482 (2)0.8757 (4)0.39278 (13)0.0349 (5)
C100.3555 (2)0.9761 (4)0.33033 (14)0.0438 (6)
H100.28661.01150.30100.053*
C110.4675 (3)1.0232 (5)0.31207 (16)0.0510 (7)
H110.47501.09100.27020.061*
C120.5668 (3)0.9688 (5)0.35637 (17)0.0546 (7)
H120.64280.99780.34460.065*
C130.5534 (2)0.8708 (4)0.41863 (16)0.0460 (6)
H130.62140.83640.44900.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03127 (19)0.0431 (2)0.0358 (2)0.00031 (11)0.00433 (13)0.00303 (12)
S10.0438 (4)0.0589 (5)0.0356 (3)0.0033 (3)0.0049 (3)0.0100 (3)
N10.0312 (9)0.0386 (12)0.0328 (9)0.0013 (8)0.0002 (7)0.0049 (8)
N20.0332 (10)0.0478 (14)0.0404 (11)0.0046 (9)0.0003 (8)0.0132 (9)
N30.0541 (15)0.079 (2)0.0504 (14)0.0192 (14)0.0032 (11)0.0287 (14)
N40.0325 (10)0.0390 (13)0.0410 (11)0.0018 (8)0.0018 (8)0.0002 (8)
N50.0366 (11)0.0595 (16)0.0412 (12)0.0036 (11)0.0092 (9)0.0006 (11)
N60.0408 (11)0.0518 (16)0.0499 (13)0.0046 (10)0.0099 (10)0.0094 (11)
N70.081 (2)0.083 (2)0.0462 (14)0.0153 (16)0.0196 (13)0.0044 (14)
C10.0341 (11)0.0368 (14)0.0308 (11)0.0008 (9)0.0026 (9)0.0077 (9)
C20.0456 (14)0.0489 (17)0.0402 (13)0.0035 (12)0.0013 (10)0.0058 (12)
C30.0508 (16)0.061 (2)0.0370 (13)0.0032 (13)0.0064 (11)0.0039 (12)
C40.0367 (13)0.060 (2)0.0527 (15)0.0040 (12)0.0052 (11)0.0219 (14)
C50.0421 (14)0.065 (2)0.0608 (17)0.0200 (14)0.0120 (12)0.0086 (15)
C60.0455 (14)0.0547 (18)0.0368 (12)0.0050 (12)0.0057 (10)0.0012 (11)
C70.0319 (11)0.0343 (14)0.0337 (11)0.0022 (9)0.0012 (9)0.0002 (9)
C80.0409 (13)0.0449 (17)0.0370 (12)0.0025 (11)0.0006 (10)0.0075 (10)
C90.0348 (11)0.0332 (13)0.0369 (11)0.0001 (10)0.0050 (9)0.0004 (9)
C100.0446 (14)0.0453 (17)0.0418 (13)0.0020 (11)0.0062 (11)0.0050 (11)
C110.0551 (17)0.0497 (18)0.0508 (15)0.0051 (13)0.0171 (13)0.0057 (13)
C120.0425 (14)0.055 (2)0.0695 (19)0.0090 (13)0.0208 (13)0.0018 (15)
C130.0336 (12)0.0482 (17)0.0557 (16)0.0032 (11)0.0034 (11)0.0029 (12)
Geometric parameters (Å, º) top
Cu1—N51.942 (2)C2—C31.381 (4)
Cu1—N11.9578 (19)C2—H2A0.9300
Cu1—N42.022 (2)C3—C41.373 (4)
Cu1—S12.2603 (8)C3—H30.9300
Cu1—N5i2.533 (3)C4—C51.371 (5)
S1—C81.729 (3)C4—H40.9300
N1—C71.287 (3)C5—C61.368 (4)
N1—N21.359 (3)C5—H50.9300
N2—C81.316 (3)C6—H60.9300
N3—C81.329 (4)C7—C91.472 (3)
N3—H10.872 (10)C9—C101.376 (3)
N3—H20.879 (10)C10—C111.384 (4)
N4—C131.331 (3)C10—H100.9300
N4—C91.348 (3)C11—C121.364 (4)
N5—N61.202 (3)C11—H110.9300
N6—N71.134 (3)C12—C131.377 (4)
C1—C61.372 (4)C12—H120.9300
C1—C21.380 (4)C13—H130.9300
C1—C71.477 (3)
N5—Cu1—N1173.91 (9)C2—C3—H3120.1
N5—Cu1—N494.22 (9)C5—C4—C3119.7 (2)
N1—Cu1—N480.26 (8)C5—C4—H4120.1
N5—Cu1—S1101.84 (7)C3—C4—H4120.1
N1—Cu1—S184.08 (6)C6—C5—C4120.5 (3)
N4—Cu1—S1160.44 (7)C6—C5—H5119.7
N5—Cu1—N5i85.54 (9)C4—C5—H5119.7
N1—Cu1—N5i91.79 (8)C5—C6—C1120.5 (3)
N4—Cu1—N5i89.28 (8)C5—C6—H6119.8
S1—Cu1—N5i102.92 (6)C1—C6—H6119.8
C8—S1—Cu193.90 (9)N1—C7—C9114.7 (2)
C7—N1—N2120.1 (2)N1—C7—C1123.1 (2)
C7—N1—Cu1117.58 (17)C9—C7—C1122.3 (2)
N2—N1—Cu1122.15 (15)N2—C8—N3116.7 (2)
C8—N2—N1111.9 (2)N2—C8—S1125.6 (2)
C8—N3—H1114 (2)N3—C8—S1117.71 (19)
C8—N3—H2118 (3)N4—C9—C10122.1 (2)
H1—N3—H2124 (4)N4—C9—C7114.3 (2)
C13—N4—C9118.5 (2)C10—C9—C7123.6 (2)
C13—N4—Cu1128.30 (19)C9—C10—C11118.7 (3)
C9—N4—Cu1113.11 (16)C9—C10—H10120.7
N6—N5—Cu1124.8 (2)C11—C10—H10120.7
N7—N6—N5177.3 (3)C12—C11—C10119.1 (3)
C6—C1—C2119.1 (2)C12—C11—H11120.4
C6—C1—C7120.8 (2)C10—C11—H11120.4
C2—C1—C7120.1 (2)C11—C12—C13119.4 (3)
C1—C2—C3120.4 (3)C11—C12—H12120.3
C1—C2—H2A119.8C13—C12—H12120.3
C3—C2—H2A119.8N4—C13—C12122.2 (3)
C4—C3—C2119.8 (3)N4—C13—H13118.9
C4—C3—H3120.1C12—C13—H13118.9
N5—Cu1—S1—C8167.21 (13)C2—C1—C6—C52.2 (4)
N1—Cu1—S1—C811.35 (12)C7—C1—C6—C5175.2 (3)
N4—Cu1—S1—C848.2 (2)N2—N1—C7—C9176.1 (2)
N5i—Cu1—S1—C879.13 (11)Cu1—N1—C7—C90.5 (3)
N4—Cu1—N1—C71.37 (19)N2—N1—C7—C13.0 (4)
S1—Cu1—N1—C7169.6 (2)Cu1—N1—C7—C1178.59 (18)
N5i—Cu1—N1—C787.6 (2)C6—C1—C7—N165.7 (4)
N4—Cu1—N1—N2176.9 (2)C2—C1—C7—N1111.7 (3)
S1—Cu1—N1—N214.88 (19)C6—C1—C7—C9115.3 (3)
N5i—Cu1—N1—N287.9 (2)C2—C1—C7—C967.3 (3)
C7—N1—N2—C8173.5 (2)N1—N2—C8—N3178.8 (3)
Cu1—N1—N2—C811.1 (3)N1—N2—C8—S12.6 (4)
N5—Cu1—N4—C130.4 (2)Cu1—S1—C8—N211.5 (3)
N1—Cu1—N4—C13177.8 (3)Cu1—S1—C8—N3170.0 (3)
S1—Cu1—N4—C13144.9 (2)C13—N4—C9—C100.3 (4)
N5i—Cu1—N4—C1385.9 (2)Cu1—N4—C9—C10176.6 (2)
N5—Cu1—N4—C9175.44 (18)C13—N4—C9—C7178.6 (2)
N1—Cu1—N4—C91.97 (17)Cu1—N4—C9—C72.2 (3)
S1—Cu1—N4—C939.2 (3)N1—C7—C9—N41.2 (3)
N5i—Cu1—N4—C989.97 (18)C1—C7—C9—N4179.7 (2)
N4—Cu1—N5—N6155.8 (3)N1—C7—C9—C10177.6 (3)
S1—Cu1—N5—N613.0 (3)C1—C7—C9—C101.5 (4)
N5i—Cu1—N5—N6115.3 (3)N4—C9—C10—C110.6 (4)
C6—C1—C2—C32.0 (4)C7—C9—C10—C11178.1 (3)
C7—C1—C2—C3175.5 (3)C9—C10—C11—C120.0 (5)
C1—C2—C3—C40.5 (5)C10—C11—C12—C130.9 (5)
C2—C3—C4—C52.6 (5)C9—N4—C13—C120.7 (4)
C3—C4—C5—C62.3 (5)Cu1—N4—C13—C12175.0 (2)
C4—C5—C6—C10.1 (5)C11—C12—C13—N41.3 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N2ii0.87 (1)2.22 (1)3.075 (3)168 (4)
Symmetry code: (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N2i0.87 (1)2.22 (1)3.075 (3)168 (4)
Symmetry code: (i) x, y+1, z+1.
Acknowledgements top

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Casas, J. S., Castellano, E. E., Ellena, J., Tasende, M. S. G., Sánchez, A., Sordo, J. & Vidarte, M. J. (2003). Inorg. Chem. 42, 2584–2595.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.