organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(9H-Fluoren-9-yl)-3-(4-methyl­phen­yl)-1-phenyl­propan-1-one

aSchool of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, People's Republic of China
*Correspondence e-mail: fu.feng@yahoo.com.cn

(Received 25 August 2012; accepted 26 August 2012; online 31 August 2012)

In the title compound, C29H24O, the phenyl and methyl­phenyl rings are approximately perpendicular to each other, making a dihedral angle of 87.67 (10)°, and are oriented at dihedral angles of 62.49 (9) and 84.77 (7)°, respectively, to the nearly planar fluorene ring system [maximum deviation = 0.077 (2) Å] In the crystal, weak C—H⋯π inter­actions are observed.

Related literature

For the background to fluorene and its derivatives, see: Kreyenschmidt et al. (1998[Kreyenschmidt, M., Klaerner, G., Fuhrer, T., Ashenhurst, J., Karg, S., Chen, W. D., Lee, V. Y., Scott, J. C. & Miller, R. D. (1998). Macromolecules, 31, 1099-1103.]).

[Scheme 1]

Experimental

Crystal data
  • C29H24O

  • Mr = 388.48

  • Triclinic, [P \overline 1]

  • a = 9.7188 (16) Å

  • b = 10.8189 (18) Å

  • c = 11.5132 (19) Å

  • α = 75.500 (3)°

  • β = 68.681 (3)°

  • γ = 84.315 (3)°

  • V = 1091.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.26 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 11991 measured reflections

  • 4508 independent reflections

  • 3125 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.07

  • 4508 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯Cgi 0.93 2.76 3.617 (2) 154
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the publication of its solid-state structure of fluorene and its derivatives are very useful compounds due to their good optical property and high luminescent efficiencies, and have received a lot of attentiont (Kreyenschmidt et al., 1998). To our knowledge, a great number of studies have appeared on fluorene and its derivatives. The title compound (I) is an example of this class.

In the title compound, the phenyl ring and methylphenyl ring are approximately perpendicular to each other with a dihedral angle of 87.67 (10)°, and they are oriented with respect to the nearly planar fluorene ring systems [the maximum deviation being 0.077 (2) Å] at 62.49 (9) and 84.77 (7)°, respectively. In the crystal, weak intermolecular C—H···π interaction is observed (Table 1).

Related literature top

For the background to fluorene and its derivatives, see: Kreyenschmidt et al. (1998).

Experimental top

Fluorene (2 mmo1), chalcone (2 mmo1) and NaOH (4 mmo1) were mixed in mortar, and the mixture was ground at room temperature for 30 min. Then, the mixture was washed in sequence with 15 ml aqueous solution of HCl (3%) and alcohol (95%), and the crude product was isolated by filtration. The filtrate was purified by recrystallization from anhydrous ethanol to give compound I as colourless crystals in 73% yield. Suitable crystals for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature (m.p. 445–447 K); IR (KBr, ν cm-1): 3055, 3010, 2915, 1680, 1596, 1445, 1316, 1238, 813, 685; 1H NMR (DMSO-d6, δ): 6.83–8.07 (m, 17H); 3.97 (d, 1H, J = 4.2 Hz), 3.57 (m, 1H), 3.41 (d, 2H, J = 7.0 Hz), 2.19 (s, 3H); Elemental analysis calculated for C29H24O: C 86.69, H6.19%; found: C 86.81, H 6.12%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å for phenyl H atoms, C—H = 0.96 Å for methyl H atoms, C—H = 0.97 Å for methylene H atoms, C—H = 0.98 Å for methylidyne H atoms and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
3-(9H-Fluoren-9-yl)-3-(4-methylphenyl)-1-phenylpropan-1-one top
Crystal data top
C29H24OZ = 2
Mr = 388.48F(000) = 412
Triclinic, P1Dx = 1.182 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7188 (16) ÅCell parameters from 2741 reflections
b = 10.8189 (18) Åθ = 2.3–24.1°
c = 11.5132 (19) ŵ = 0.07 mm1
α = 75.500 (3)°T = 298 K
β = 68.681 (3)°Block, colourless
γ = 84.315 (3)°0.26 × 0.20 × 0.10 mm
V = 1091.8 (3) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3125 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.5°, θmin = 1.9°
phi and ω scansh = 1212
11991 measured reflectionsk = 1313
4508 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.0224P]
where P = (Fo2 + 2Fc2)/3
4508 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C29H24Oγ = 84.315 (3)°
Mr = 388.48V = 1091.8 (3) Å3
Triclinic, P1Z = 2
a = 9.7188 (16) ÅMo Kα radiation
b = 10.8189 (18) ŵ = 0.07 mm1
c = 11.5132 (19) ÅT = 298 K
α = 75.500 (3)°0.26 × 0.20 × 0.10 mm
β = 68.681 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3125 reflections with I > 2σ(I)
11991 measured reflectionsRint = 0.022
4508 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
4508 reflectionsΔρmin = 0.14 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7361 (3)0.3823 (3)0.2434 (4)0.1697 (14)
H1A0.67240.44710.24790.255*
H1B0.77750.41040.30980.255*
H1C0.81420.36650.16130.255*
C20.6470 (3)0.2591 (2)0.2611 (4)0.1069 (8)
C30.6537 (2)0.1587 (2)0.1586 (3)0.0959 (7)
H30.71340.16580.07650.115*
C40.57379 (17)0.04748 (18)0.17503 (17)0.0716 (5)
H40.58050.01850.10370.086*
C50.48412 (15)0.03221 (14)0.29525 (15)0.0550 (4)
C60.47896 (19)0.13296 (16)0.39899 (18)0.0721 (5)
H60.42130.12550.48150.086*
C70.5588 (3)0.24457 (19)0.3811 (3)0.0993 (7)
H70.55260.31110.45190.119*
C80.38850 (14)0.08493 (13)0.31928 (13)0.0487 (3)
H80.41070.11380.38470.058*
C90.22214 (14)0.05094 (13)0.37594 (12)0.0483 (3)
H90.20760.02180.44970.058*
C100.12098 (15)0.15808 (13)0.42180 (13)0.0510 (4)
C110.12221 (18)0.22548 (15)0.50885 (14)0.0651 (4)
H110.19450.20960.54600.078*
C120.0134 (2)0.31740 (17)0.53970 (17)0.0785 (5)
H120.01280.36360.59800.094*
C130.0940 (2)0.34070 (16)0.48454 (19)0.0795 (6)
H130.16600.40260.50630.095*
C140.09647 (17)0.27467 (15)0.39865 (17)0.0693 (5)
H140.16930.29120.36200.083*
C150.01168 (15)0.18229 (13)0.36693 (14)0.0543 (4)
C160.03253 (15)0.09317 (14)0.28503 (13)0.0544 (4)
C170.15716 (14)0.01666 (13)0.28738 (13)0.0498 (3)
C180.19680 (16)0.07957 (15)0.22107 (15)0.0618 (4)
H180.28020.12980.22100.074*
C190.1106 (2)0.09985 (19)0.15508 (17)0.0777 (5)
H190.13660.16390.10990.093*
C200.0136 (2)0.0261 (2)0.15556 (17)0.0827 (6)
H200.07130.04230.11200.099*
C210.05361 (18)0.07084 (18)0.21919 (16)0.0729 (5)
H210.13700.12070.21820.087*
C220.41980 (15)0.19632 (14)0.20298 (13)0.0547 (4)
H22A0.42400.16510.12980.066*
H22B0.33860.25710.21860.066*
C230.56189 (15)0.26443 (13)0.17041 (14)0.0538 (4)
C240.63527 (15)0.34181 (13)0.03808 (14)0.0538 (4)
C250.76455 (17)0.40522 (16)0.01130 (17)0.0735 (5)
H250.80400.39760.07530.088*
C260.8347 (2)0.47915 (18)0.1090 (2)0.0910 (6)
H260.92100.52150.12570.109*
C270.7787 (2)0.49087 (17)0.2040 (2)0.0899 (7)
H270.82690.54100.28510.108*
C280.6513 (2)0.42882 (18)0.18013 (17)0.0857 (6)
H280.61330.43620.24500.103*
C290.57968 (18)0.35505 (15)0.05867 (15)0.0679 (4)
H290.49270.31380.04230.081*
O10.61395 (13)0.25998 (12)0.25284 (11)0.0812 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.148 (3)0.126 (2)0.296 (4)0.073 (2)0.124 (3)0.114 (3)
C20.0798 (15)0.0880 (16)0.192 (3)0.0286 (12)0.0758 (18)0.0689 (18)
C30.0586 (11)0.1152 (18)0.139 (2)0.0149 (12)0.0379 (12)0.0747 (16)
C40.0486 (9)0.0858 (12)0.0836 (12)0.0001 (8)0.0194 (8)0.0312 (10)
C50.0415 (7)0.0599 (9)0.0671 (10)0.0025 (6)0.0243 (7)0.0124 (7)
C60.0647 (10)0.0668 (11)0.0898 (12)0.0028 (8)0.0416 (9)0.0067 (9)
C70.0926 (15)0.0659 (12)0.160 (2)0.0136 (11)0.0783 (16)0.0153 (14)
C80.0408 (7)0.0543 (8)0.0487 (8)0.0069 (6)0.0157 (6)0.0054 (6)
C90.0419 (7)0.0492 (8)0.0451 (7)0.0076 (6)0.0106 (6)0.0002 (6)
C100.0441 (7)0.0511 (8)0.0455 (7)0.0101 (6)0.0036 (6)0.0038 (6)
C110.0632 (10)0.0676 (10)0.0542 (9)0.0122 (8)0.0078 (7)0.0108 (8)
C120.0831 (13)0.0647 (11)0.0676 (11)0.0099 (10)0.0027 (10)0.0208 (9)
C130.0658 (11)0.0590 (10)0.0824 (12)0.0019 (8)0.0056 (10)0.0102 (9)
C140.0501 (9)0.0601 (10)0.0757 (11)0.0017 (7)0.0066 (8)0.0002 (9)
C150.0416 (7)0.0509 (8)0.0541 (8)0.0063 (6)0.0060 (6)0.0025 (7)
C160.0419 (8)0.0611 (9)0.0510 (8)0.0103 (7)0.0113 (6)0.0005 (7)
C170.0397 (7)0.0519 (8)0.0492 (8)0.0123 (6)0.0079 (6)0.0036 (6)
C180.0486 (8)0.0663 (10)0.0673 (10)0.0096 (7)0.0115 (7)0.0196 (8)
C190.0693 (11)0.0951 (13)0.0718 (11)0.0202 (10)0.0151 (9)0.0320 (10)
C200.0696 (12)0.1190 (16)0.0667 (11)0.0226 (11)0.0270 (9)0.0210 (11)
C210.0524 (9)0.0937 (13)0.0696 (10)0.0061 (9)0.0252 (8)0.0058 (10)
C220.0415 (7)0.0595 (9)0.0554 (8)0.0073 (6)0.0142 (6)0.0012 (7)
C230.0434 (8)0.0534 (8)0.0593 (9)0.0042 (6)0.0130 (7)0.0098 (7)
C240.0447 (8)0.0457 (8)0.0595 (9)0.0032 (6)0.0040 (7)0.0129 (7)
C250.0574 (9)0.0658 (10)0.0840 (12)0.0167 (8)0.0055 (8)0.0170 (9)
C260.0678 (11)0.0761 (13)0.0967 (15)0.0269 (9)0.0106 (11)0.0130 (11)
C270.0867 (14)0.0625 (11)0.0737 (12)0.0086 (10)0.0195 (11)0.0025 (9)
C280.0953 (14)0.0782 (12)0.0606 (10)0.0041 (11)0.0087 (10)0.0026 (9)
C290.0639 (10)0.0646 (10)0.0596 (10)0.0111 (8)0.0076 (8)0.0043 (8)
O10.0721 (8)0.0992 (9)0.0744 (8)0.0310 (7)0.0316 (6)0.0031 (7)
Geometric parameters (Å, º) top
C1—C21.532 (3)C14—C151.390 (2)
C1—H1A0.9600C14—H140.9300
C1—H1B0.9600C15—C161.462 (2)
C1—H1C0.9600C16—C211.388 (2)
C2—C71.374 (3)C16—C171.4026 (19)
C2—C31.375 (3)C17—C181.386 (2)
C3—C41.382 (3)C18—C191.382 (2)
C3—H30.9300C18—H180.9300
C4—C51.382 (2)C19—C201.378 (3)
C4—H40.9300C19—H190.9300
C5—C61.390 (2)C20—C211.373 (3)
C5—C81.5171 (19)C20—H200.9300
C6—C71.388 (3)C21—H210.9300
C6—H60.9300C22—C231.5091 (19)
C7—H70.9300C22—H22A0.9700
C8—C221.5186 (18)C22—H22B0.9700
C8—C91.5510 (18)C23—O11.2167 (17)
C8—H80.9800C23—C241.490 (2)
C9—C171.5099 (19)C24—C291.377 (2)
C9—C101.5141 (19)C24—C251.388 (2)
C9—H90.9800C25—C261.375 (2)
C10—C111.383 (2)C25—H250.9300
C10—C151.395 (2)C26—C271.363 (3)
C11—C121.389 (2)C26—H260.9300
C11—H110.9300C27—C281.373 (3)
C12—C131.380 (3)C27—H270.9300
C12—H120.9300C28—C291.386 (2)
C13—C141.365 (3)C28—H280.9300
C13—H130.9300C29—H290.9300
C2—C1—H1A109.5C15—C14—H14120.6
C2—C1—H1B109.5C14—C15—C10120.40 (15)
H1A—C1—H1B109.5C14—C15—C16131.16 (15)
C2—C1—H1C109.5C10—C15—C16108.37 (13)
H1A—C1—H1C109.5C21—C16—C17120.27 (15)
H1B—C1—H1C109.5C21—C16—C15130.73 (15)
C7—C2—C3117.6 (2)C17—C16—C15108.82 (13)
C7—C2—C1120.8 (3)C18—C17—C16119.94 (14)
C3—C2—C1121.6 (3)C18—C17—C9129.88 (13)
C2—C3—C4121.5 (2)C16—C17—C9110.01 (12)
C2—C3—H3119.3C19—C18—C17119.05 (15)
C4—C3—H3119.3C19—C18—H18120.5
C3—C4—C5121.37 (19)C17—C18—H18120.5
C3—C4—H4119.3C20—C19—C18120.66 (17)
C5—C4—H4119.3C20—C19—H19119.7
C4—C5—C6117.19 (15)C18—C19—H19119.7
C4—C5—C8124.00 (14)C21—C20—C19121.19 (16)
C6—C5—C8118.78 (14)C21—C20—H20119.4
C7—C6—C5120.8 (2)C19—C20—H20119.4
C7—C6—H6119.6C20—C21—C16118.86 (16)
C5—C6—H6119.6C20—C21—H21120.6
C2—C7—C6121.5 (2)C16—C21—H21120.6
C2—C7—H7119.2C23—C22—C8113.76 (11)
C6—C7—H7119.2C23—C22—H22A108.8
C5—C8—C22114.16 (12)C8—C22—H22A108.8
C5—C8—C9111.08 (11)C23—C22—H22B108.8
C22—C8—C9110.72 (10)C8—C22—H22B108.8
C5—C8—H8106.8H22A—C22—H22B107.7
C22—C8—H8106.8O1—C23—C24119.90 (13)
C9—C8—H8106.8O1—C23—C22120.24 (13)
C17—C9—C10102.26 (11)C24—C23—C22119.81 (13)
C17—C9—C8116.84 (11)C29—C24—C25118.31 (14)
C10—C9—C8114.00 (11)C29—C24—C23123.07 (13)
C17—C9—H9107.8C25—C24—C23118.61 (15)
C10—C9—H9107.8C26—C25—C24120.53 (18)
C8—C9—H9107.8C26—C25—H25119.7
C11—C10—C15120.21 (14)C24—C25—H25119.7
C11—C10—C9129.23 (14)C27—C26—C25120.48 (18)
C15—C10—C9110.51 (13)C27—C26—H26119.8
C10—C11—C12118.74 (17)C25—C26—H26119.8
C10—C11—H11120.6C26—C27—C28120.15 (17)
C12—C11—H11120.6C26—C27—H27119.9
C13—C12—C11120.51 (17)C28—C27—H27119.9
C13—C12—H12119.7C27—C28—C29119.50 (19)
C11—C12—H12119.7C27—C28—H28120.3
C14—C13—C12121.29 (17)C29—C28—H28120.3
C14—C13—H13119.4C24—C29—C28121.02 (16)
C12—C13—H13119.4C24—C29—H29119.5
C13—C14—C15118.86 (17)C28—C29—H29119.5
C13—C14—H14120.6
C7—C2—C3—C40.7 (3)C10—C15—C16—C21173.55 (14)
C1—C2—C3—C4179.65 (18)C14—C15—C16—C17178.32 (14)
C2—C3—C4—C50.3 (3)C10—C15—C16—C171.52 (15)
C3—C4—C5—C60.6 (2)C21—C16—C17—C181.7 (2)
C3—C4—C5—C8177.22 (14)C15—C16—C17—C18177.33 (12)
C4—C5—C6—C71.2 (2)C21—C16—C17—C9174.09 (12)
C8—C5—C6—C7176.79 (14)C15—C16—C17—C91.59 (14)
C3—C2—C7—C60.1 (3)C10—C9—C17—C18176.22 (13)
C1—C2—C7—C6179.10 (19)C8—C9—C17—C1858.58 (18)
C5—C6—C7—C20.8 (3)C10—C9—C17—C161.03 (13)
C4—C5—C8—C2210.92 (19)C8—C9—C17—C16126.24 (12)
C6—C5—C8—C22171.25 (12)C16—C17—C18—C191.1 (2)
C4—C5—C8—C9115.14 (15)C9—C17—C18—C19173.70 (13)
C6—C5—C8—C962.69 (16)C17—C18—C19—C200.4 (2)
C5—C8—C9—C1770.05 (15)C18—C19—C20—C211.3 (3)
C22—C8—C9—C1757.89 (16)C19—C20—C21—C160.7 (3)
C5—C8—C9—C10170.88 (11)C17—C16—C21—C200.8 (2)
C22—C8—C9—C1061.18 (15)C15—C16—C21—C20175.36 (14)
C17—C9—C10—C11177.56 (13)C5—C8—C22—C2373.97 (16)
C8—C9—C10—C1155.39 (18)C9—C8—C22—C23159.78 (12)
C17—C9—C10—C150.08 (13)C8—C22—C23—O124.5 (2)
C8—C9—C10—C15127.14 (12)C8—C22—C23—C24158.07 (12)
C15—C10—C11—C120.3 (2)O1—C23—C24—C29177.53 (14)
C9—C10—C11—C12177.51 (13)C22—C23—C24—C290.1 (2)
C10—C11—C12—C130.1 (2)O1—C23—C24—C251.5 (2)
C11—C12—C13—C140.0 (3)C22—C23—C24—C25178.93 (13)
C12—C13—C14—C150.1 (2)C29—C24—C25—C260.0 (2)
C13—C14—C15—C100.2 (2)C23—C24—C25—C26179.05 (14)
C13—C14—C15—C16176.26 (14)C24—C25—C26—C270.3 (3)
C11—C10—C15—C140.3 (2)C25—C26—C27—C280.1 (3)
C9—C10—C15—C14178.05 (12)C26—C27—C28—C290.4 (3)
C11—C10—C15—C16176.89 (11)C25—C24—C29—C280.5 (2)
C9—C10—C15—C160.85 (15)C23—C24—C29—C28179.53 (15)
C14—C15—C16—C213.2 (3)C27—C28—C29—C240.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C27—H27···Cgi0.932.763.617 (2)154
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC29H24O
Mr388.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.7188 (16), 10.8189 (18), 11.5132 (19)
α, β, γ (°)75.500 (3), 68.681 (3), 84.315 (3)
V3)1091.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.26 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11991, 4508, 3125
Rint0.022
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.07
No. of reflections4508
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C27—H27···Cgi0.932.763.617 (2)154
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Project of Hubei Provincial Department of Education, China (No. D20122903).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationKreyenschmidt, M., Klaerner, G., Fuhrer, T., Ashenhurst, J., Karg, S., Chen, W. D., Lee, V. Y., Scott, J. C. & Miller, R. D. (1998). Macromolecules, 31, 1099–1103.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds