organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl­coumarin

aDepartment of Organic Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
*Correspondence e-mail: mariacmatos@gmail.com

(Received 20 July 2012; accepted 1 August 2012; online 4 August 2012)

In the title compound, C15H10O2, a 3-phenyl derivative of the coumarin (also known as 2H-chromen-2-one or 2H-1-benzopyran-2-one) scaffold, the Cp—Cp—Cc—Cc torsion angle between the coumarin (c) ring system and the phenyl (p) ring is −47.6 (2)°.

Related literature

For the synthesis of the title compound, see: Matos, Santana et al.. et al. (2011[Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342-3345.]); Matos, Terán et al.. et al. (2011[Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127-7137.]). For examples of biological activity of coumarin derivatives, see: Borges et al. (2009[Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23-85.]); Matos et al. (2009[Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268-3270.], 2010[Matos, M. J., Viña, D., Janeiro, P., Borges, F., Santana, L. & Uriarte, E. (2010). Bioorg. Med. Chem. Lett. 20, 5157-5160.]); Matos, Santana et al.. et al. (2011[Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342-3345.]); Matos, Terán et al.. et al. (2011[Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127-7137.]); Viña, Matos, Ferino et al. (2012[Viña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012). Chem. Med. Chem. 7, 464-470.]); Viña, Matos Yáñez et al. (2012[Viña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012). Med. Chem. Commun. 3, 213-218.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10O2

  • Mr = 222.23

  • Monoclinic, C 2/c

  • a = 18.469 (4) Å

  • b = 5.9596 (12) Å

  • c = 19.274 (4) Å

  • β = 99.079 (3)°

  • V = 2094.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.27 × 0.22 × 0.09 mm

Data collection
  • Bruker SMART CCD 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 1

  • 9021 measured reflections

  • 1924 independent reflections

  • 1492 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.03

  • 1924 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coumarin derivatives are very interesting molecules due to the biological properties that they may display (Borges et al. 2009; Matos et al. 2009, 2010; Matos, Santana et al.., 2011; Matos, Terán et al.., 2011). The title structure is a 3-phenyl coumarin derivative that posses one aromatic ring linked at that position. Therefore, the X-ray analysis of this compound (figure 1) aims to contribute to the elucidation of structural requirements needed to understand the partial planarity of the compound (coumarin nucleus) and the torsion of the 3-phenyl ring. From the single-crystal diffraction measurements one can conclude that the experimental bond lengths are within normal values with the average the molecule bond lengths. The planarity of the coumarin moiety is also evident by the torsion angles values between their carbons. Also, the angle C5—C6—C7—C8 is from -47.6 (2)°, typical of the torsion permitted by the rotation of the 3-phenyl ring. Packing diagram of the structure allows the interpretation of the spatial orientation of the molecules (figure 2).

Related literature top

For the synthesis of the title compound, see: Matos, Santana et al.. et al. (2011); Matos, Terán et al.. et al. (2011). For examples of biological activity of coumarin derivatives, see: Borges et al. (2009); Matos et al. (2009, 2010); Matos, Santana et al.. et al. (2011); Matos, Terán et al.. et al. (2011); Viña, Matos, Ferino et al. (2012); Viña, Matos Yáñez et al. (2012).

Experimental top

3-Phenylcoumarin was prepared according to the protocol described by Matos, Santana et al.. et al. (2011) and Matos, Terán et al.. et al. (2011). Perkin reaction gave the desired coumarin derivative. A solution of 2-hydroxybenzaldehyde (0.9 g, 7.37 mmol) and the phenylacetic acid (1.25 g, 9.21 mmol) in dimethyl sulfoxide (15 ml) was prepared. Dicyclohexylcarbodiimide (DCC, 2.37 g, 11.50 mmol) was added, and the mixture was heated at 110 °C for 24 h. Ice (100 ml) and acetic acid (10 ml) were added to the reaction mixture. After keeping it at room temperature for 2 h, the mixture was extracted with ether (3 x 25 ml). The organic layer was extracted with sodium bicarbonate solution (50 ml, 5%) and then water (20 ml). The solvent was evaporated under vacuum, and the dry residue was purified by flash chromatography (hexane/ethyl acetate 9:1). A white solid was obtained in a yield of 67% (1.1 g). Suitable crystals for X-ray studies were grown from slow evaporation from acetone/ethanol: Mp. 131–132 °C; 1H NMR (300 MHz, CDCl3): δ 7.34–7.54 (5H, m, 6-H, 8-H, 9-H, 11-H, 13-H), 7.56–7.66 (2H, m, 10-H, 12-H), 7.72–7.80 (2H, m, 5-H, 7-H), 7.90 (1H, s, 4-H); 13C NMR (75.47 MHz, CDCl3): δ 116.5, 119.7, 124.5, 127.9, 128.4, 128.5, 128.5, 128.9, 131.4, 134.7, 139.9, 153.5, 160.6; DEPT: 116.5, 124.5, 127.9, 128.4, 128.5, 128.5, 131.4, 139.9; MS m/z 223 ([M + 1]+, 16), 222 (M+, 100). Anal. Calcd for C15H10O2: C, 81.07; H, 4.54. Found: C, 81.02; H, 4.52.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title structure viewed along the b axis.
[Figure 3] Fig. 3. The formation of the title compound.
3-Phenylcoumarin top
Crystal data top
C15H10O2F(000) = 928
Mr = 222.23F(000) = 928
Monoclinic, C2/cDx = 1.409 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.7107 Å
a = 18.469 (4) ÅCell parameters from 1813 reflections
b = 5.9596 (12) Åθ = 2.8–26.2°
c = 19.274 (4) ŵ = 0.09 mm1
β = 99.079 (3)°T = 100 K
V = 2094.9 (7) Å3Prism, colourless
Z = 80.27 × 0.22 × 0.09 mm
Data collection top
Bruker SMART CCD 1000
diffractometer
1924 independent reflections
Radiation source: fine-focus sealed tube1492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2221
Tmin = 0.876, Tmax = 1k = 07
9021 measured reflectionsl = 023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.3579P]
where P = (Fo2 + 2Fc2)/3
1924 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H10O2V = 2094.9 (7) Å3
Mr = 222.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.469 (4) ŵ = 0.09 mm1
b = 5.9596 (12) ÅT = 100 K
c = 19.274 (4) Å0.27 × 0.22 × 0.09 mm
β = 99.079 (3)°
Data collection top
Bruker SMART CCD 1000
diffractometer
1924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1492 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 1Rint = 0.042
9021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
1924 reflectionsΔρmin = 0.26 e Å3
154 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21370 (8)0.2410 (3)0.36971 (8)0.0168 (4)
H10.2190.37120.39850.02*
C20.15672 (9)0.2280 (3)0.31395 (8)0.0184 (4)
H20.12230.34720.30540.022*
C30.14979 (9)0.0409 (3)0.27041 (8)0.0192 (4)
H30.11150.03370.23130.023*
C40.19876 (9)0.1348 (3)0.28427 (8)0.0188 (4)
H40.19390.2630.25460.023*
C50.25492 (9)0.1254 (3)0.34124 (8)0.0166 (4)
H50.28760.24850.35110.02*
C60.26348 (8)0.0646 (3)0.38409 (8)0.0145 (4)
C70.32522 (8)0.0774 (3)0.44333 (8)0.0146 (3)
C80.34288 (8)0.0903 (3)0.49004 (8)0.0145 (3)
H80.31390.22280.48580.017*
C90.40398 (8)0.0744 (3)0.54588 (8)0.0145 (4)
C100.42315 (8)0.2408 (3)0.59681 (8)0.0168 (4)
H100.39490.37440.59550.02*
C110.48286 (9)0.2116 (3)0.64877 (8)0.0201 (4)
H110.49540.32460.68340.024*
C120.52497 (9)0.0168 (3)0.65072 (8)0.0206 (4)
H120.56640.0010.68630.025*
C130.50708 (9)0.1506 (3)0.60137 (8)0.0190 (4)
H130.53570.28350.60260.023*
C140.44646 (8)0.1196 (3)0.55016 (8)0.0152 (4)
C150.37106 (8)0.2799 (3)0.44882 (8)0.0161 (4)
O10.42953 (6)0.29055 (18)0.50224 (5)0.0177 (3)
O20.36238 (6)0.43926 (18)0.40948 (6)0.0220 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0191 (8)0.0165 (8)0.0160 (8)0.0006 (7)0.0062 (7)0.0010 (7)
C20.0167 (8)0.0186 (9)0.0206 (8)0.0025 (7)0.0050 (7)0.0052 (7)
C30.0166 (8)0.0250 (9)0.0156 (8)0.0040 (7)0.0013 (6)0.0034 (7)
C40.0215 (9)0.0188 (9)0.0167 (8)0.0050 (7)0.0051 (7)0.0029 (7)
C50.0188 (8)0.0134 (8)0.0182 (8)0.0012 (7)0.0050 (7)0.0020 (6)
C60.0144 (8)0.0156 (8)0.0144 (8)0.0023 (6)0.0054 (6)0.0004 (6)
C70.0149 (8)0.0147 (8)0.0152 (8)0.0012 (6)0.0055 (6)0.0020 (6)
C80.0154 (8)0.0132 (8)0.0160 (8)0.0001 (6)0.0058 (6)0.0028 (6)
C90.0138 (8)0.0167 (8)0.0140 (8)0.0030 (6)0.0056 (6)0.0019 (6)
C100.0174 (8)0.0166 (8)0.0177 (8)0.0012 (7)0.0066 (7)0.0003 (7)
C110.0216 (9)0.0225 (9)0.0163 (8)0.0063 (7)0.0037 (7)0.0017 (7)
C120.0158 (8)0.0283 (10)0.0171 (8)0.0035 (7)0.0010 (6)0.0041 (7)
C130.0174 (8)0.0201 (9)0.0199 (9)0.0013 (7)0.0046 (7)0.0057 (7)
C140.0168 (8)0.0162 (8)0.0136 (8)0.0038 (7)0.0057 (6)0.0005 (6)
C150.0154 (8)0.0161 (8)0.0171 (8)0.0020 (7)0.0038 (6)0.0025 (7)
O10.0202 (6)0.0138 (6)0.0185 (6)0.0026 (5)0.0011 (5)0.0000 (5)
O20.0239 (6)0.0148 (6)0.0265 (6)0.0003 (5)0.0017 (5)0.0053 (5)
Geometric parameters (Å, º) top
C1—C21.382 (2)C8—H80.95
C1—C61.395 (2)C9—C141.392 (2)
C1—H10.95C9—C101.401 (2)
C2—C31.390 (2)C10—C111.379 (2)
C2—H20.95C10—H100.95
C3—C41.382 (2)C11—C121.395 (2)
C3—H30.95C11—H110.95
C4—C51.387 (2)C12—C131.382 (2)
C4—H40.95C12—H120.95
C5—C61.396 (2)C13—C141.383 (2)
C5—H50.95C13—H130.95
C6—C71.483 (2)C14—O11.3776 (18)
C7—C81.350 (2)C15—O21.2102 (19)
C7—C151.468 (2)C15—O11.3709 (19)
C8—C91.434 (2)
C2—C1—C6120.61 (15)C9—C8—H8119
C2—C1—H1119.7C14—C9—C10117.94 (14)
C6—C1—H1119.7C14—C9—C8117.93 (14)
C1—C2—C3120.03 (15)C10—C9—C8124.13 (15)
C1—C2—H2120C11—C10—C9120.29 (15)
C3—C2—H2120C11—C10—H10119.9
C4—C3—C2119.76 (15)C9—C10—H10119.9
C4—C3—H3120.1C10—C11—C12120.22 (15)
C2—C3—H3120.1C10—C11—H11119.9
C3—C4—C5120.48 (15)C12—C11—H11119.9
C3—C4—H4119.8C13—C12—C11120.71 (15)
C5—C4—H4119.8C13—C12—H12119.6
C4—C5—C6120.11 (15)C11—C12—H12119.6
C4—C5—H5119.9C12—C13—C14118.25 (15)
C6—C5—H5119.9C12—C13—H13120.9
C1—C6—C5118.96 (14)C14—C13—H13120.9
C1—C6—C7121.09 (14)O1—C14—C13116.88 (14)
C5—C6—C7119.94 (14)O1—C14—C9120.55 (14)
C8—C7—C15118.97 (14)C13—C14—C9122.57 (14)
C8—C7—C6123.41 (14)O2—C15—O1116.41 (14)
C15—C7—C6117.56 (14)O2—C15—C7125.59 (15)
C7—C8—C9122.02 (15)O1—C15—C7117.99 (14)
C7—C8—H8119C15—O1—C14122.53 (12)
C6—C1—C2—C31.8 (2)C9—C10—C11—C120.5 (2)
C1—C2—C3—C41.9 (2)C10—C11—C12—C130.8 (2)
C2—C3—C4—C50.2 (2)C11—C12—C13—C140.0 (2)
C3—C4—C5—C61.6 (2)C12—C13—C14—O1179.25 (13)
C2—C1—C6—C50.0 (2)C12—C13—C14—C91.2 (2)
C2—C1—C6—C7179.41 (14)C10—C9—C14—O1178.93 (13)
C4—C5—C6—C11.6 (2)C8—C9—C14—O10.4 (2)
C4—C5—C6—C7177.73 (14)C10—C9—C14—C131.5 (2)
C1—C6—C7—C8133.05 (16)C8—C9—C14—C13179.15 (13)
C5—C6—C7—C847.6 (2)C8—C7—C15—O2178.09 (15)
C1—C6—C7—C1549.86 (19)C6—C7—C15—O20.9 (2)
C5—C6—C7—C15129.50 (15)C8—C7—C15—O10.9 (2)
C15—C7—C8—C91.5 (2)C6—C7—C15—O1178.17 (12)
C6—C7—C8—C9178.59 (14)O2—C15—O1—C14179.01 (13)
C7—C8—C9—C141.3 (2)C7—C15—O1—C140.1 (2)
C7—C8—C9—C10178.02 (14)C13—C14—O1—C15179.72 (13)
C14—C9—C10—C110.6 (2)C9—C14—O1—C150.1 (2)
C8—C9—C10—C11179.96 (14)

Experimental details

Crystal data
Chemical formulaC15H10O2
Mr222.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.469 (4), 5.9596 (12), 19.274 (4)
β (°) 99.079 (3)
V3)2094.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.22 × 0.09
Data collection
DiffractometerBruker SMART CCD 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.876, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9021, 1924, 1492
Rint0.042
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.03
No. of reflections1924
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by funds from the Xunta da Galicia (09CSA030203PR), the Ministerio de Sanidad y Consumo (PS09/00501) and the Fundação para a Ciência e Tecnologia (SFRH/BD/61262/2009).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBorges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationMatos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342–3345.  Web of Science CrossRef CAS PubMed
First citationMatos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127–7137.  Web of Science CrossRef CAS PubMed
First citationMatos, M. J., Viña, D., Janeiro, P., Borges, F., Santana, L. & Uriarte, E. (2010). Bioorg. Med. Chem. Lett. 20, 5157–5160.  Web of Science CrossRef CAS PubMed
First citationMatos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationViña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012). Chem. Med. Chem. 7, 464–470.  Web of Science PubMed
First citationViña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012). Med. Chem. Commun. 3, 213–218.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds