organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[4-(Methyl­sulfan­yl)phen­yl]-2-(2,3,4-trimeth­­oxy­phen­yl)ethene

aPoznań University of Medical Sciences, Faculty of Pharmacy, Chair and Department of Chemical Technology of Drugs, Grunwaldzka 6, 60-780 Poznań, Poland, and bAdam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: artur_ko@amu.edu.pl

(Received 3 July 2012; accepted 20 August 2012; online 25 August 2012)

In the title compound, C18H20O3S, the rings are almost coplanar [inter-ring dihedral angle = 6.6 (2)°]. In the crystal, weak C—H⋯O hydrogen bonds between the meth­oxy groups connect adjacent mol­ecules, giving chains which extend along [001].

Related literature

For the synthesis, see: Cushman et al. (1991[Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, Ch. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579-2588.]); Ulman et al. (1990[Ulman, A., Willand, C. S., Kohler, W., Robello, D. R., Williams, D. J. & Handley, L. (1990). J. Am. Chem. Soc. 112, 7083-7090.]). For the chemopreventive, cardioprotective and neuroprotective activity of the natural stilbene derivative trans-resveratrol (3,4′,5-trihy­droxy­stilbene), see: Goswami & Das (2009[Goswami, S. K. & Das, D. K. (2009). Cancer Lett. 284, 1-6.]). For preclinical and clinical studies of its therapeutic action in cancer diseases, see: Bishayee et al. (2010[Bishayee, A., Politis, T. & Darvesh, A. S. (2010). Cancer Treat. Rev. 36, 43-53.]); Kundu & Surh (2008)[Kundu, J. & Surh, Y.-J. (2008). Cancer Lett. 269, 243-261.]; Rimando & Suh (2008[Rimando, A. & Suh, N. (2008). Planta Med. 74, 1635-1643.]). For the cancer prevention activity of other natural compounds with stilbene backbones, see: Saiko et al. (2008[Saiko, P., Szakmary, A., Jaeger, W. & Szekeres, T. (2008). Mutat. Res. 658, 68-94.]); Rimando & Suh (2008[Rimando, A. & Suh, N. (2008). Planta Med. 74, 1635-1643.]). For similar structures, see: Sopková-de Oliveira Santos et al. (2009[Sopková-de Oliveira Santos, J., Bazin, M.-A., Lohier, J.-F., El Kihel, L. & Rault, S. (2009). Acta Cryst. C65, o311-o313.]). For bond-length data, see: Glusker et al. (1996[Glusker, J. P., Lewis, M. & Rossi, M. (1996). Cryst. Res. Technol. 31, 196.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O3S

  • Mr = 316.40

  • Monoclinic, P 21 /c

  • a = 13.9633 (4) Å

  • b = 7.7094 (2) Å

  • c = 15.1518 (4) Å

  • β = 90.705 (3)°

  • V = 1630.95 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.55 × 0.5 × 0.01 mm

Data collection
  • Agilent Xcalibur Atlas CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.900, Tmax = 1.000

  • 8931 measured reflections

  • 2862 independent reflections

  • 2229 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.105

  • S = 1.12

  • 2862 reflections

  • 279 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O17i 0.93 (3) 2.72 (3) 3.505 (4) 143 (2)
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chemopreventive, cardioprotective and neuroprotective activities of trans-resveratrol (3,4',5-trihydroxystilbene, RSV), the best known natural stilbene derivative, have been documented in numerous studies on animal models (Goswami & Das, 2009). Its therapeutic action in cancer diseases is also under intensive preclinical and clinical studies (Rimando & Suh, 2008; Bishayee et al., 2010; Kundu & Surh, 2008). In the last decade, other natural compounds with stilbene backbones have been shown to possess promising cancer prevention activities (Saiko et al., 2008; Rimando & Suh, 2008).

Interest in the concept and practice of chemoprevention as an approach to the control of cancer has increased especially due to the unsatisfactory results of classic chemotherapy. In vitro mechanisms of action of RSV have been extensively discussed in numerous reports and reviews. Several key mechanisms of action include: inhibition of the transcription factor NF-κB, regulation of cytochrome P450 enzymes, activation of nuclear receptors such as estrogen receptors (ERs), inhibition of expression and activity of inflammation-related enzymes such as cyclooxygenases and regulation of sirtuins. These facts lead to the conclusion that RSV might be the potential lead structure for cancer chemopreventive and chemotherapeutic compounds.

Our previous studies have shown that a series of 4'-methylthio-trans-stilbene derivatives differing in the number and position of additional methoxy groups exhibited high affinity toward active sites of CYP1 enzymes involved in the activation of procarcinogens, in particular CYP1A1, CYP1A2 and CYP1B1. 2,3,4-Trimethoxy-4'-methylthio-trans-stilbene was found to be the most selective inhibitor of the enzymes CYP1A1 and CYP1B1 (IC50 values of 0.9 and 1.0 mM respectively, and exerted very low affinity to CYP1A2 (IC50 value above 50 mM).

In the title compound, C18H20O3S, (E)-1-(2,3,4-trimethoxyphenyl)-2-(4'-methylthiophenyl)ethene (Fig. 1a), the double bond C9—C10 in the conjugated linkage is in the trans configuration [torsion angle C(4)—C(9)—C(10)—C(11), 179.7 (2)°]. Furthermore, the value for the observed double bond [C9—C10, 1.319 (3) Å] is exactly as for the normal value (1.32 Å) and the single bonds [C(4)—C(9), 1.466 (3) Å and C(10)—C(11), 1.469 (3) Å] are shorter than the normal values (1.51 Å) (Glusker et al., 1996), indicating the formation of a weak conjugated π-electron system. The aromatic rings do not deviate significantly from a coplanar arrangement, with a dihedral angle of 6.6 (2)° between the planes. Among the three methoxy substituents on the aromatic ring, only that at C14 is approximately coplanar with the benzene ring. The other two, at C15 and C16, are oriented towards opposite sides of the ring (Fig. 1 b) (Sopková-de Oliveira Santos et al., 2009).

A very weak intermolecular contact is observed between the methoxy C22 – H22B group and atom O17i of the methoxy group of a neighbouring molecule [for symmetry code: (i), see Table 1], giving one-dimensional chains which extend along [001] (Figs. 2, 3).

Related literature top

For the synthesis, see: Cushman et al. (1991); Ulman et al. (1990). For the chemopreventive, cardioprotective and neuroprotective activity of the natural stilbene derivative trans-resveratrol (3,4',5-trihydroxystilbene), see: Goswami & Das (2009). For preclinical and clinical studies of its therapeutic action in cancer diseases, see: Bishayee et al. (2010); Kundu & Surh (2008); Rimando & Suh (2008). For the cancer prevention activity of other natural compounds with stilbene backbones, see: Saiko et al. (2008); Rimando & Suh (2008). For similar structures, see: Sopková-de Oliveira Santos et al. (2009). For bond-length data, see: Glusker et al. (1996).

Experimental top

The key synthetic step for the construction of this compound involves the generation of diethyl 4-methylthiobenzyl phosphonate as an intermediate. This was prepared from commercially available 4-methylthiobenzyl alcohol in two steps. First, 4-methylthiobenzyl alcohol was converted to the chloride using SOCl2 in toluene at room temperature. Then, through the Michaelis-Arbuzov reaction of the 4-methylthiobenzyl chloride with triethylphosphite at 130 °C the corresponding phosphonate ester was obtained (Ulman et al., 1990). The title compound was prepared by the Wittig-Horner reaction of diethyl 4-methylthiolbenzylphosphonate with the commercially available 2,3,4-trimethoxybenzaldehyde in DMF using sodium hydride as a base (Cushman et al., 1991; Ulman et al., 1990).

Refinement top

All hydrogen atoms were found in difference-Fourier maps and were freely refined with isotropic displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Figure 1. Mutually perpendicular views of the title compound [(a) and (b)], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2. The hydrogen-bonded chain of molecules with weak intermolecular hydrogen bonds shown as dashed lines. For symmetry code (i), see Table 1. For symmetry code (ii): x, -y - 1/2, z + 1/2.

Figure 3. The crystal packing viewed down the chain direction [001].
(E)-1-[4-(Methylsulfanyl)phenyl]-2-(2,3,4-trimethoxyphenyl)ethene top
Crystal data top
C18H20O3SF(000) = 672
Mr = 316.40Dx = 1.289 Mg m3
Monoclinic, P21/cMelting point: 417 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.9633 (4) ÅCell parameters from 6497 reflections
b = 7.7094 (2) Åθ = 2.6–29.0°
c = 15.1518 (4) ŵ = 0.21 mm1
β = 90.705 (3)°T = 293 K
V = 1630.95 (8) Å3Plate, colourless
Z = 40.55 × 0.5 × 0.01 mm
Data collection top
Agilent Xcalibur Atlas CCD-detector
diffractometer
2862 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.3088 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 1416
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 98
Tmin = 0.900, Tmax = 1.000l = 1818
8931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.105All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0252P)2 + 1.2649P]
where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H20O3SV = 1630.95 (8) Å3
Mr = 316.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9633 (4) ŵ = 0.21 mm1
b = 7.7094 (2) ÅT = 293 K
c = 15.1518 (4) Å0.55 × 0.5 × 0.01 mm
β = 90.705 (3)°
Data collection top
Agilent Xcalibur Atlas CCD-detector
diffractometer
2862 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2229 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 1.000Rint = 0.025
8931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 1.12Δρmax = 0.17 e Å3
2862 reflectionsΔρmin = 0.25 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61061 (17)0.0320 (3)0.76027 (15)0.0414 (6)
C20.55297 (19)0.1096 (4)0.69676 (16)0.0473 (6)
H20.4970 (17)0.165 (3)0.7110 (14)0.045 (7)*
C30.57983 (19)0.1080 (4)0.60942 (16)0.0485 (7)
H30.5392 (18)0.162 (4)0.5676 (16)0.055 (8)*
C40.66434 (17)0.0313 (3)0.58195 (15)0.0414 (6)
C50.72238 (19)0.0446 (4)0.64716 (17)0.0476 (6)
H50.7822 (19)0.096 (3)0.6326 (16)0.054 (8)*
C60.69588 (19)0.0444 (4)0.73424 (16)0.0478 (6)
H60.7355 (19)0.101 (4)0.7777 (17)0.059 (8)*
S70.58562 (5)0.02516 (10)0.87413 (4)0.0535 (2)
C80.4734 (3)0.1316 (6)0.8820 (2)0.0704 (10)
H8C0.482 (3)0.258 (6)0.863 (3)0.120 (15)*
H8B0.428 (2)0.071 (4)0.850 (2)0.081 (11)*
H8A0.456 (2)0.131 (4)0.942 (2)0.086 (10)*
C90.68881 (19)0.0317 (4)0.48811 (16)0.0467 (6)
H90.6450 (19)0.091 (4)0.4513 (17)0.059 (8)*
C100.76519 (19)0.0373 (3)0.45162 (16)0.0431 (6)
H100.8099 (18)0.093 (3)0.4862 (16)0.050 (7)*
C110.78855 (16)0.0365 (3)0.35739 (14)0.0393 (5)
C120.73453 (18)0.0533 (3)0.29456 (16)0.0445 (6)
H120.6803 (18)0.120 (3)0.3124 (16)0.054 (7)*
C130.75702 (18)0.0514 (4)0.20615 (16)0.0452 (6)
H130.7196 (17)0.117 (3)0.1650 (16)0.049 (7)*
C140.83398 (17)0.0449 (3)0.17705 (14)0.0410 (6)
C150.89145 (16)0.1333 (3)0.23833 (15)0.0388 (6)
C160.86901 (17)0.1269 (3)0.32758 (15)0.0395 (6)
O170.92198 (13)0.2190 (3)0.38833 (11)0.0578 (5)
C181.0193 (3)0.1635 (6)0.4006 (3)0.0774 (11)
H18B1.035 (3)0.201 (5)0.457 (3)0.116 (14)*
H18A1.056 (3)0.217 (6)0.356 (3)0.139 (18)*
H18C1.024 (4)0.033 (8)0.399 (3)0.19 (2)*
O190.96529 (12)0.2384 (2)0.21239 (11)0.0502 (5)
C201.0435 (2)0.1512 (5)0.1699 (2)0.0614 (8)
H20C1.092 (3)0.230 (5)0.166 (2)0.105 (13)*
H20B1.027 (2)0.119 (5)0.109 (2)0.104 (13)*
H20A1.062 (3)0.048 (7)0.200 (3)0.15 (2)*
O210.85858 (12)0.0665 (2)0.09066 (10)0.0511 (5)
C220.7946 (2)0.0007 (5)0.02544 (19)0.0604 (8)
H22C0.790 (2)0.128 (4)0.0280 (17)0.067 (9)*
H22B0.820 (2)0.030 (4)0.0289 (19)0.066 (9)*
H22A0.729 (3)0.053 (4)0.030 (2)0.093 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (14)0.0393 (14)0.0407 (12)0.0025 (12)0.0003 (10)0.0012 (11)
C20.0412 (14)0.0562 (17)0.0445 (14)0.0144 (13)0.0042 (11)0.0008 (12)
C30.0451 (15)0.0568 (18)0.0435 (14)0.0140 (13)0.0012 (11)0.0069 (12)
C40.0432 (13)0.0376 (14)0.0433 (12)0.0018 (12)0.0024 (10)0.0016 (11)
C50.0430 (14)0.0470 (16)0.0527 (15)0.0110 (13)0.0044 (12)0.0026 (12)
C60.0471 (15)0.0502 (16)0.0459 (14)0.0097 (13)0.0036 (12)0.0071 (12)
S70.0570 (4)0.0646 (5)0.0391 (3)0.0026 (4)0.0009 (3)0.0045 (3)
C80.059 (2)0.103 (3)0.0489 (18)0.006 (2)0.0105 (15)0.0036 (19)
C90.0469 (15)0.0486 (16)0.0446 (13)0.0087 (13)0.0032 (11)0.0044 (12)
C100.0463 (15)0.0389 (14)0.0441 (13)0.0013 (12)0.0035 (11)0.0018 (11)
C110.0396 (13)0.0352 (13)0.0433 (12)0.0036 (11)0.0030 (10)0.0026 (11)
C120.0392 (14)0.0456 (16)0.0487 (14)0.0078 (12)0.0029 (11)0.0028 (12)
C130.0415 (14)0.0492 (16)0.0447 (13)0.0030 (13)0.0035 (11)0.0027 (12)
C140.0412 (13)0.0418 (14)0.0401 (12)0.0064 (12)0.0041 (10)0.0027 (11)
C150.0384 (13)0.0288 (13)0.0494 (13)0.0004 (11)0.0073 (10)0.0031 (10)
C160.0429 (13)0.0305 (13)0.0452 (13)0.0010 (11)0.0031 (10)0.0035 (10)
O170.0595 (12)0.0597 (13)0.0545 (10)0.0221 (10)0.0079 (9)0.0170 (9)
C180.070 (2)0.090 (3)0.072 (2)0.023 (2)0.0233 (19)0.001 (2)
O190.0539 (11)0.0388 (10)0.0583 (10)0.0096 (9)0.0156 (8)0.0020 (8)
C200.0468 (17)0.064 (2)0.074 (2)0.0107 (17)0.0185 (15)0.0018 (18)
O210.0515 (10)0.0631 (13)0.0389 (9)0.0022 (9)0.0028 (8)0.0015 (8)
C220.065 (2)0.073 (3)0.0427 (15)0.0063 (19)0.0016 (14)0.0032 (15)
Geometric parameters (Å, º) top
C1—C21.383 (3)C12—C131.380 (3)
C1—C61.390 (3)C12—H120.96 (3)
C1—S71.765 (2)C13—C141.382 (3)
C2—C31.380 (3)C13—H130.95 (2)
C2—H20.92 (2)C14—O211.368 (3)
C3—C41.388 (3)C14—C151.397 (3)
C3—H30.94 (3)C15—O191.373 (3)
C4—C51.398 (3)C15—C161.393 (3)
C4—C91.466 (3)C16—O171.372 (3)
C5—C61.375 (3)O17—C181.435 (4)
C5—H50.95 (3)C18—H18B0.92 (4)
C6—H60.96 (3)C18—H18A0.95 (4)
S7—C81.774 (3)C18—H18C1.00 (6)
C8—H8C1.03 (4)O19—C201.441 (3)
C8—H8B0.93 (3)C20—H20C0.91 (4)
C8—H8A0.94 (3)C20—H20B0.98 (4)
C9—C101.319 (3)C20—H20A0.95 (5)
C9—H90.94 (3)O21—C221.422 (3)
C10—C111.469 (3)C22—H22C0.99 (3)
C10—H100.92 (2)C22—H22B0.93 (3)
C11—C121.392 (3)C22—H22A1.01 (3)
C11—C161.401 (3)
C2—C1—C6118.6 (2)C13—C12—H12118.0 (15)
C2—C1—S7124.92 (19)C11—C12—H12119.9 (15)
C6—C1—S7116.43 (18)C12—C13—C14120.2 (2)
C3—C2—C1120.0 (2)C12—C13—H13120.0 (15)
C3—C2—H2118.2 (14)C14—C13—H13119.9 (15)
C1—C2—H2121.8 (14)O21—C14—C13125.2 (2)
C2—C3—C4122.2 (2)O21—C14—C15115.3 (2)
C2—C3—H3118.2 (15)C13—C14—C15119.5 (2)
C4—C3—H3119.6 (15)O19—C15—C16118.5 (2)
C3—C4—C5117.0 (2)O19—C15—C14121.7 (2)
C3—C4—C9119.9 (2)C16—C15—C14119.6 (2)
C5—C4—C9123.1 (2)O17—C16—C15120.5 (2)
C6—C5—C4121.2 (2)O17—C16—C11118.0 (2)
C6—C5—H5117.9 (15)C15—C16—C11121.4 (2)
C4—C5—H5120.9 (15)C16—O17—C18115.7 (2)
C5—C6—C1121.0 (2)O17—C18—H18B104 (2)
C5—C6—H6119.9 (16)O17—C18—H18A108 (3)
C1—C6—H6119.1 (16)H18B—C18—H18A113 (4)
C1—S7—C8103.76 (14)O17—C18—H18C111 (3)
S7—C8—H8C108 (2)H18B—C18—H18C108 (4)
S7—C8—H8B109 (2)H18A—C18—H18C113 (4)
H8C—C8—H8B115 (3)C15—O19—C20115.4 (2)
S7—C8—H8A108 (2)O19—C20—H20C107 (2)
H8C—C8—H8A108 (3)O19—C20—H20B111 (2)
H8B—C8—H8A109 (3)H20C—C20—H20B106 (3)
C10—C9—C4127.2 (2)O19—C20—H20A112 (3)
C10—C9—H9118.0 (16)H20C—C20—H20A112 (3)
C4—C9—H9114.7 (16)H20B—C20—H20A108 (4)
C9—C10—C11126.6 (2)C14—O21—C22117.2 (2)
C9—C10—H10119.9 (15)O21—C22—H22C112.2 (17)
C11—C10—H10113.5 (15)O21—C22—H22B106.2 (17)
C12—C11—C16117.2 (2)H22C—C22—H22B108 (2)
C12—C11—C10122.8 (2)O21—C22—H22A111.2 (19)
C16—C11—C10120.0 (2)H22C—C22—H22A110 (3)
C13—C12—C11122.1 (2)H22B—C22—H22A108 (3)
C6—C1—C2—C31.0 (4)C12—C13—C14—O21174.9 (2)
S7—C1—C2—C3179.7 (2)C12—C13—C14—C153.1 (4)
C1—C2—C3—C40.5 (4)O21—C14—C15—O192.0 (3)
C2—C3—C4—C50.3 (4)C13—C14—C15—O19176.2 (2)
C2—C3—C4—C9179.3 (3)O21—C14—C15—C16176.6 (2)
C3—C4—C5—C60.7 (4)C13—C14—C15—C161.6 (4)
C9—C4—C5—C6178.9 (3)O19—C15—C16—O172.3 (3)
C4—C5—C6—C10.3 (4)C14—C15—C16—O17177.1 (2)
C2—C1—C6—C50.6 (4)O19—C15—C16—C11173.4 (2)
S7—C1—C6—C5179.4 (2)C14—C15—C16—C111.4 (4)
C2—C1—S7—C81.6 (3)C12—C11—C16—O17178.7 (2)
C6—C1—S7—C8179.7 (2)C10—C11—C16—O172.2 (3)
C3—C4—C9—C10179.0 (3)C12—C11—C16—C152.9 (4)
C5—C4—C9—C100.6 (4)C10—C11—C16—C15178.0 (2)
C4—C9—C10—C11179.7 (2)C15—C16—O17—C1866.6 (3)
C9—C10—C11—C125.8 (4)C11—C16—O17—C18117.6 (3)
C9—C10—C11—C16175.1 (3)C16—C15—O19—C20119.7 (3)
C16—C11—C12—C131.5 (4)C14—C15—O19—C2065.6 (3)
C10—C11—C12—C13179.4 (2)C13—C14—O21—C226.6 (4)
C11—C12—C13—C141.5 (4)C15—C14—O21—C22171.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O17i0.93 (3)2.72 (3)3.505 (4)143 (2)
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H20O3S
Mr316.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.9633 (4), 7.7094 (2), 15.1518 (4)
β (°) 90.705 (3)
V3)1630.95 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.55 × 0.5 × 0.01
Data collection
DiffractometerAgilent Xcalibur Atlas CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.900, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8931, 2862, 2229
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.105, 1.12
No. of reflections2862
No. of parameters279
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O17i0.93 (3)2.72 (3)3.505 (4)143 (2)
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

This study was supported by the Polish Ministry of Science and Higher Education grant No. N N405 209737.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBishayee, A., Politis, T. & Darvesh, A. S. (2010). Cancer Treat. Rev. 36, 43–53.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, Ch. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579–2588.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGlusker, J. P., Lewis, M. & Rossi, M. (1996). Cryst. Res. Technol. 31, 196.  Google Scholar
First citationGoswami, S. K. & Das, D. K. (2009). Cancer Lett. 284, 1–6.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKundu, J. & Surh, Y.-J. (2008). Cancer Lett. 269, 243–261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRimando, A. & Suh, N. (2008). Planta Med. 74, 1635–1643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaiko, P., Szakmary, A., Jaeger, W. & Szekeres, T. (2008). Mutat. Res. 658, 68–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSopková-de Oliveira Santos, J., Bazin, M.-A., Lohier, J.-F., El Kihel, L. & Rault, S. (2009). Acta Cryst. C65, o311–o313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUlman, A., Willand, C. S., Kohler, W., Robello, D. R., Williams, D. J. & Handley, L. (1990). J. Am. Chem. Soc. 112, 7083–7090.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds