supplementary materials


zs2227 scheme

Acta Cryst. (2012). E68, m1181    [ doi:10.1107/S1600536812035398 ]

Dichlorido(1-{(E)-[phenyl(pyridin-2-yl-[kappa]N)methylidene]amino-[kappa]N}pyrrolidin-2-one-[kappa]O)copper(II) monohydrate

R. J. Kunnath, M. R. Prathapachandra Kurup and S. W. Ng

Abstract top

The CuII atom in the title compound, [CuCl2(C16H15N3O)]·H2O, is N,N',O-chelated by the neutral Schiff base ligand and exists in a square-pyramidal geometry. It is displaced by 0.316 (1) Å out of the square plane (r.m.s. deviation = 0.015 Å) in the direction of the apical Cl atom. The apical Cl atoms of adjacent complex units are hydrogen-bond acceptors to two water molecules, the interaction generating a centrosymmetric dimer through a cyclic R42(8) association.

Comment top

Among the plethora of Schiff bases that have been synthesized for the purpose of furnishing coordination compounds, some are synthesized in situ, and their formulation is inferred from the crystal structure of the product. Phenyl[(pyridin-2-yl)methylidene]amino]pyrrolidin-2-one is an example of such a Schiff base, which possess a carbonyl group and it forms a monohydrated complex with copper(II) chloride (Scheme I, Fig. 1). The CuII atom in this complex is N,N',O-chelated by the neutral Schiff ligand and has a square-pyramidal geometry, with the atom displaced out of the square plane in the direction of the apical Cl atom by 0.316 (1) Å. The apical Cl atoms of adjacent complex units are hydrogen-bond acceptors to two water molecules (Table 1), the interaction generating a centrosymmetric dimer (Fig. 2) through a cyclic R24(8) association (Etter et al., 1990).

Related literature top

For a history of Schiff bases, see: Tidwell (2008). For graph-set notation, see: Etter et al. (1990).

Experimental top

1-[(E)-[Phenyl(pyridin-2-yl)methylidene]amino]pyrrolidin-2-one was synthesized in situ from 2-benzoylpyridine (0.183 g, 1 mmol) and 1-aminopyrrolidin-2-one (0.100 g, 1 mmol) by heating in methanol for 2 h. Copper(II) chloride dihydrate (0.170 g, 1 mmol) was added, and the mixture heated for 5 h. The resulting pale green solid was collected and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O—H = 0.84±0.01 Å, with their displacement parameters refined. The (0 1 0) reflection was omitted owing to interference from the beam stop.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [CuCl2(C16H15N3O)].H2O at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen-bonded dimer.
Dichlorido(1-{(E)-[phenyl(pyridin-2-yl- κN)methylidene]amino-κN}pyrrolidin-2-one-κO)copper(II) monohydrate top
Crystal data top
[CuCl2(C16H15N3O)]·H2OZ = 2
Mr = 417.77F(000) = 426
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1289 (2) ÅCell parameters from 9988 reflections
b = 9.4017 (2) Åθ = 2.3–28.2°
c = 10.6798 (2) ŵ = 1.57 mm1
α = 90.4349 (6)°T = 293 K
β = 99.1627 (6)°Cube, green
γ = 105.4911 (6)°0.30 × 0.30 × 0.30 mm
V = 870.84 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3987 independent reflections
Radiation source: fine-focus sealed tube3761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.650, Tmax = 0.650k = 1212
14839 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3259P]
where P = (Fo2 + 2Fc2)/3
3987 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.45 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuCl2(C16H15N3O)]·H2Oγ = 105.4911 (6)°
Mr = 417.77V = 870.84 (3) Å3
Triclinic, P1Z = 2
a = 9.1289 (2) ÅMo Kα radiation
b = 9.4017 (2) ŵ = 1.57 mm1
c = 10.6798 (2) ÅT = 293 K
α = 90.4349 (6)°0.30 × 0.30 × 0.30 mm
β = 99.1627 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3987 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3761 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.650Rint = 0.033
14839 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.45 e Å3
S = 1.07Δρmin = 0.34 e Å3
3987 reflectionsAbsolute structure: ?
225 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.48709 (2)0.63969 (2)0.845334 (18)0.03229 (8)
Cl10.54227 (8)0.72830 (6)0.64075 (5)0.06303 (16)
Cl20.64240 (5)0.82061 (5)0.97595 (4)0.04703 (12)
O10.62811 (14)0.49646 (15)0.86442 (14)0.0478 (3)
O1W0.2859 (2)0.5064 (3)0.4420 (2)0.0832 (6)
N10.28316 (15)0.68570 (15)0.84571 (13)0.0340 (3)
N20.33922 (15)0.44928 (14)0.77515 (13)0.0308 (3)
N30.40965 (15)0.34475 (15)0.75166 (14)0.0339 (3)
C10.2610 (2)0.81241 (19)0.88367 (18)0.0410 (4)
H1A0.34620.88930.91760.049*
C20.1151 (2)0.8336 (2)0.8743 (2)0.0505 (5)
H2A0.10280.92270.90300.061*
C30.0106 (2)0.7216 (2)0.8222 (2)0.0557 (5)
H30.10940.73390.81500.067*
C40.0108 (2)0.5900 (2)0.7803 (2)0.0467 (4)
H40.07290.51290.74390.056*
C50.15940 (18)0.57554 (17)0.79400 (16)0.0333 (3)
C60.19396 (18)0.43781 (17)0.75440 (15)0.0320 (3)
C70.06742 (18)0.30651 (17)0.70149 (17)0.0342 (3)
C80.0047 (3)0.2941 (2)0.5739 (2)0.0549 (5)
H80.04280.36720.52020.066*
C90.1152 (3)0.1720 (3)0.5270 (2)0.0704 (7)
H90.15750.16320.44120.085*
C100.1720 (2)0.0643 (2)0.6054 (3)0.0614 (6)
H100.25180.01790.57260.074*
C110.1118 (2)0.0772 (2)0.7324 (2)0.0530 (5)
H110.15160.00410.78560.064*
C120.0085 (2)0.1990 (2)0.7818 (2)0.0428 (4)
H120.04910.20820.86800.051*
C130.3480 (2)0.19716 (19)0.68807 (18)0.0399 (4)
H13A0.29710.20190.60190.048*
H13B0.27590.13260.73440.048*
C140.4930 (2)0.1453 (2)0.6898 (2)0.0510 (5)
H14A0.47700.04610.71980.061*
H14B0.51820.14440.60490.061*
C150.6226 (2)0.2524 (2)0.7783 (2)0.0509 (5)
H15A0.65000.20640.85630.061*
H15B0.71320.28490.73820.061*
C160.5608 (2)0.3787 (2)0.80431 (18)0.0392 (4)
H10.355 (3)0.564 (3)0.493 (3)0.100 (12)*
H20.330 (4)0.441 (3)0.435 (4)0.114 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02431 (11)0.02906 (11)0.03759 (12)0.00025 (8)0.00019 (7)0.00478 (8)
Cl10.0821 (4)0.0500 (3)0.0433 (3)0.0090 (3)0.0168 (2)0.0018 (2)
Cl20.0366 (2)0.0455 (2)0.0467 (2)0.00346 (18)0.00297 (17)0.01499 (18)
O10.0300 (6)0.0431 (7)0.0650 (9)0.0087 (5)0.0048 (6)0.0102 (6)
O1W0.0539 (11)0.1031 (17)0.0784 (13)0.0071 (11)0.0049 (9)0.0176 (12)
N10.0284 (6)0.0284 (6)0.0404 (7)0.0027 (5)0.0005 (5)0.0031 (5)
N20.0270 (6)0.0253 (6)0.0374 (7)0.0043 (5)0.0027 (5)0.0006 (5)
N30.0292 (6)0.0277 (6)0.0426 (7)0.0055 (5)0.0039 (5)0.0018 (5)
C10.0379 (9)0.0302 (8)0.0495 (10)0.0047 (7)0.0003 (7)0.0060 (7)
C20.0452 (10)0.0355 (9)0.0704 (13)0.0149 (8)0.0020 (9)0.0109 (9)
C30.0357 (9)0.0442 (10)0.0866 (16)0.0148 (8)0.0026 (10)0.0097 (10)
C40.0281 (8)0.0363 (9)0.0696 (12)0.0042 (7)0.0010 (8)0.0078 (8)
C50.0274 (7)0.0270 (7)0.0409 (8)0.0024 (6)0.0011 (6)0.0019 (6)
C60.0281 (7)0.0272 (7)0.0357 (8)0.0016 (6)0.0013 (6)0.0006 (6)
C70.0244 (7)0.0259 (7)0.0487 (9)0.0030 (6)0.0022 (6)0.0033 (6)
C80.0518 (12)0.0488 (11)0.0482 (11)0.0085 (9)0.0008 (9)0.0049 (9)
C90.0602 (14)0.0709 (16)0.0591 (14)0.0100 (12)0.0031 (11)0.0230 (12)
C100.0396 (10)0.0414 (11)0.0903 (17)0.0088 (8)0.0091 (10)0.0261 (11)
C110.0368 (9)0.0295 (8)0.0926 (16)0.0040 (7)0.0193 (10)0.0060 (9)
C120.0334 (8)0.0344 (8)0.0578 (11)0.0056 (7)0.0058 (7)0.0058 (7)
C130.0404 (9)0.0314 (8)0.0460 (9)0.0073 (7)0.0060 (7)0.0074 (7)
C140.0479 (11)0.0396 (10)0.0684 (13)0.0156 (8)0.0119 (9)0.0043 (9)
C150.0423 (10)0.0509 (11)0.0632 (12)0.0225 (9)0.0033 (9)0.0043 (9)
C160.0321 (8)0.0392 (9)0.0461 (9)0.0102 (7)0.0048 (7)0.0014 (7)
Geometric parameters (Å, º) top
Cu1—N21.9888 (13)C5—C61.486 (2)
Cu1—N12.0213 (14)C6—C71.482 (2)
Cu1—O12.0878 (13)C7—C81.382 (3)
Cu1—Cl22.2125 (4)C7—C121.384 (2)
Cu1—Cl12.4240 (5)C8—C91.383 (3)
O1—C161.231 (2)C8—H80.9300
O1W—H10.834 (10)C9—C101.366 (4)
O1W—H20.833 (10)C9—H90.9300
N1—C11.331 (2)C10—C111.372 (4)
N1—C51.350 (2)C10—H100.9300
N2—C61.284 (2)C11—C121.389 (3)
N2—N31.3518 (19)C11—H110.9300
N3—C161.355 (2)C12—H120.9300
N3—C131.466 (2)C13—C141.526 (3)
C1—C21.387 (3)C13—H13A0.9700
C1—H1A0.9300C13—H13B0.9700
C2—C31.371 (3)C14—C151.517 (3)
C2—H2A0.9300C14—H14A0.9700
C3—C41.385 (3)C14—H14B0.9700
C3—H30.9300C15—C161.486 (2)
C4—C51.384 (2)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
N2—Cu1—N178.77 (5)C8—C7—C12120.20 (17)
N2—Cu1—O178.29 (5)C8—C7—C6120.33 (16)
N1—Cu1—O1152.34 (6)C12—C7—C6119.42 (16)
N2—Cu1—Cl2163.34 (4)C7—C8—C9119.4 (2)
N1—Cu1—Cl2100.41 (4)C7—C8—H8120.3
O1—Cu1—Cl297.17 (4)C9—C8—H8120.3
N2—Cu1—Cl195.08 (4)C10—C9—C8120.6 (2)
N1—Cu1—Cl1100.24 (4)C10—C9—H9119.7
O1—Cu1—Cl196.99 (5)C8—C9—H9119.7
Cl2—Cu1—Cl1101.40 (2)C9—C10—C11120.19 (19)
C16—O1—Cu1109.91 (11)C9—C10—H10119.9
H1—O1W—H298 (3)C11—C10—H10119.9
C1—N1—C5118.68 (14)C10—C11—C12120.2 (2)
C1—N1—Cu1127.24 (12)C10—C11—H11119.9
C5—N1—Cu1113.95 (11)C12—C11—H11119.9
C6—N2—N3127.33 (14)C7—C12—C11119.36 (19)
C6—N2—Cu1119.74 (11)C7—C12—H12120.3
N3—N2—Cu1112.90 (10)C11—C12—H12120.3
N2—N3—C16113.89 (13)N3—C13—C14102.37 (15)
N2—N3—C13131.06 (14)N3—C13—H13A111.3
C16—N3—C13114.85 (14)C14—C13—H13A111.3
N1—C1—C2122.22 (16)N3—C13—H13B111.3
N1—C1—H1A118.9C14—C13—H13B111.3
C2—C1—H1A118.9H13A—C13—H13B109.2
C3—C2—C1119.11 (17)C15—C14—C13107.37 (15)
C3—C2—H2A120.4C15—C14—H14A110.2
C1—C2—H2A120.4C13—C14—H14A110.2
C2—C3—C4119.32 (18)C15—C14—H14B110.2
C2—C3—H3120.3C13—C14—H14B110.2
C4—C3—H3120.3H14A—C14—H14B108.5
C5—C4—C3118.56 (17)C16—C15—C14105.17 (15)
C5—C4—H4120.7C16—C15—H15A110.7
C3—C4—H4120.7C14—C15—H15A110.7
N1—C5—C4122.09 (15)C16—C15—H15B110.7
N1—C5—C6115.32 (14)C14—C15—H15B110.7
C4—C5—C6122.59 (15)H15A—C15—H15B108.8
N2—C6—C7127.44 (14)O1—C16—N3122.62 (16)
N2—C6—C5112.02 (13)O1—C16—C15128.59 (17)
C7—C6—C5120.52 (13)N3—C16—C15108.77 (15)
N2—Cu1—O1—C1612.11 (13)C3—C4—C5—C6178.79 (19)
N1—Cu1—O1—C1646.6 (2)N3—N2—C6—C71.0 (3)
Cl2—Cu1—O1—C16175.86 (13)Cu1—N2—C6—C7179.23 (13)
Cl1—Cu1—O1—C1681.66 (13)N3—N2—C6—C5179.28 (14)
N2—Cu1—N1—C1179.79 (16)Cu1—N2—C6—C52.54 (19)
O1—Cu1—N1—C1145.74 (15)N1—C5—C6—N21.0 (2)
Cl2—Cu1—N1—C117.15 (16)C4—C5—C6—N2179.64 (17)
Cl1—Cu1—N1—C186.58 (15)N1—C5—C6—C7177.33 (15)
N2—Cu1—N1—C53.96 (12)C4—C5—C6—C72.0 (3)
O1—Cu1—N1—C538.43 (19)N2—C6—C7—C897.6 (2)
Cl2—Cu1—N1—C5167.02 (11)C5—C6—C7—C884.3 (2)
Cl1—Cu1—N1—C589.24 (12)N2—C6—C7—C1284.8 (2)
N1—Cu1—N2—C63.67 (13)C5—C6—C7—C1293.27 (19)
O1—Cu1—N2—C6168.11 (14)C12—C7—C8—C91.3 (3)
Cl2—Cu1—N2—C692.48 (18)C6—C7—C8—C9178.8 (2)
Cl1—Cu1—N2—C695.78 (13)C7—C8—C9—C100.2 (4)
N1—Cu1—N2—N3177.89 (12)C8—C9—C10—C110.8 (4)
O1—Cu1—N2—N313.46 (11)C9—C10—C11—C120.7 (3)
Cl2—Cu1—N2—N389.09 (17)C8—C7—C12—C111.4 (3)
Cl1—Cu1—N2—N382.65 (11)C6—C7—C12—C11178.96 (16)
C6—N2—N3—C16168.57 (16)C10—C11—C12—C70.4 (3)
Cu1—N2—N3—C1613.14 (17)N2—N3—C13—C14177.20 (17)
C6—N2—N3—C135.9 (3)C16—N3—C13—C148.4 (2)
Cu1—N2—N3—C13172.38 (14)N3—C13—C14—C1511.8 (2)
C5—N1—C1—C21.4 (3)C13—C14—C15—C1611.4 (2)
Cu1—N1—C1—C2177.05 (15)Cu1—O1—C16—N39.2 (2)
N1—C1—C2—C31.2 (3)Cu1—O1—C16—C15172.06 (17)
C1—C2—C3—C40.1 (4)N2—N3—C16—O12.2 (3)
C2—C3—C4—C50.7 (3)C13—N3—C16—O1177.64 (17)
C1—N1—C5—C40.5 (3)N2—N3—C16—C15176.76 (15)
Cu1—N1—C5—C4176.76 (15)C13—N3—C16—C151.4 (2)
C1—N1—C5—C6179.87 (15)C14—C15—C16—O1174.7 (2)
Cu1—N1—C5—C63.92 (18)C14—C15—C16—N36.4 (2)
C3—C4—C5—N10.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···Cl10.83 (1)2.34 (1)3.175 (2)178 (4)
O1w—H2···Cl1i0.83 (1)2.41 (2)3.221 (3)165 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···Cl10.83 (1)2.34 (1)3.175 (2)178 (4)
O1w—H2···Cl1i0.83 (1)2.41 (2)3.221 (3)165 (4)
Symmetry code: (i) x+1, y+1, z+1.
Acknowledgements top

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tidwell, T. T. (2008). Angew. Chem. Int. Ed. Engl. 47, 1016–1020.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.