organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Cyano­eth­yl)-1H-imidazole-4,5-dicarbo­nitrile

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 6 August 2012; accepted 20 August 2012; online 25 August 2012)

In the title tricyano­nitrile compound, C8H5N5, the N-substituted cyano­ethyl group is offset to the imidazole ring [dihedral angle = 75.41 (15)°].

Related literature

For background to the application of imidazole compounds as ligands, see: Li et al. (1955[Li, N. C., Chu, T. L., Fujii, C. T. & White, J. M. (1955). J. Am. Chem. Soc. 77, 859-861.]). For the significance of N atoms in metal complex chemistry, see: Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]). For examples of some imidazole complexes, see: Martin & Edsall (1958[Martin, R. B. & Edsall, J. T. (1958). J. Am. Chem. Soc. 80, 5033-5035.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5N5

  • Mr = 171.17

  • Triclinic, [P \overline 1]

  • a = 6.4831 (6) Å

  • b = 6.7538 (6) Å

  • c = 10.4040 (11) Å

  • α = 77.865 (9)°

  • β = 84.297 (8)°

  • γ = 74.499 (8)°

  • V = 428.71 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.43 × 0.25 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.973, Tmax = 0.986

  • 3805 measured reflections

  • 2265 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.09

  • 2265 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalRED (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalRED. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazole ligands have been used with remarkable success in coordination chemistry over past decades (Li et al., 1955). Some of the reasons are for this are that the N atom plays an important role in the formation of metal complexes (Fujita et al., 1994), and that imidazole complexes show conjugate acid-base properties and good complexation coordination performance in the solid state. Some examples of imidazole complexes have been reported (Martin & Edsall, 1958). Here we report on a new imidazole compound, the polycyano-substituted imidazole, the title compound C8H5N5.

In the molecular structure of this compound (Fig. 1). The bond lengths and bond angles are within normal ranges. The N-bound cyanoethyl side chain is offset to the imidazole ring [torsion angles C5—N4—C4—C2 and N4—C4—C2—C1, -78.0 (2) and -61.4 (2)° respectively]. The dihedral angle between the cyanoethyl group defined by atoms N1—C1—C2—C4 and the imidazole ring is 75.41 (15)°]

Related literature top

For background to the application of imidazole compounds as ligands, see: Li et al. (1955). For the significance of N atoms in metal complex chemistry, see: Fujita et al. (1994). For examples of some imidazole complexes, see: Martin & Edsall (1958).

Experimental top

A mixture of 4,5-dicyanoimidazole (1.18 g, 10 mmol) and powdered potassium hydroxide (100 mg) (as a catalyst) in acrylonitrile (20 ml) was heated at 130 °C for 3 hr in a sealed tube, after which the solution was evaporated to dryness. The crude product obtained was recrystallized twice from acetone to give a pure blue product. Yield: 89.7%. Anal: Calcd. for C8H5N5: C, 56.1; H, 2.9; N, 40.9%: Found: C, 56.15; H, 2.96; N, 40.89%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms [C—H = 0.93 Å (aromatic) and 0.97 Å (methylene)], with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalRED (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Figure 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
1-(2-Cyanoethyl)-1H-imidazole-4,5-dicarbonitrile top
Crystal data top
C8H5N5Z = 2
Mr = 171.17F(000) = 176
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4831 (6) ÅCell parameters from 1220 reflections
b = 6.7538 (6) Åθ = 3.2–29.0°
c = 10.4040 (11) ŵ = 0.09 mm1
α = 77.865 (9)°T = 293 K
β = 84.297 (8)°Block, blue
γ = 74.499 (8)°0.43 × 0.25 × 0.16 mm
V = 428.71 (7) Å3
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
2265 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1439 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 16.1623 pixels mm-1θmax = 29.0°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.973, Tmax = 0.986l = 1314
3805 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.0566P]
where P = (Fo2 + 2Fc2)/3
2265 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H5N5γ = 74.499 (8)°
Mr = 171.17V = 428.71 (7) Å3
Triclinic, P1Z = 2
a = 6.4831 (6) ÅMo Kα radiation
b = 6.7538 (6) ŵ = 0.09 mm1
c = 10.4040 (11) ÅT = 293 K
α = 77.865 (9)°0.43 × 0.25 × 0.16 mm
β = 84.297 (8)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
2265 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1439 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.986Rint = 0.020
3805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.09Δρmax = 0.13 e Å3
2265 reflectionsΔρmin = 0.21 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.25841 (19)0.19385 (19)0.19288 (12)0.0356 (3)
N50.5564 (2)0.2497 (2)0.08299 (14)0.0438 (4)
C80.5883 (2)0.0426 (2)0.13842 (15)0.0367 (4)
C70.3704 (3)0.1861 (3)0.28068 (17)0.0462 (4)
C60.4074 (2)0.0040 (2)0.20743 (15)0.0353 (4)
C50.3567 (2)0.3342 (2)0.11807 (16)0.0420 (4)
H5A0.29020.47590.09380.050*
N30.9384 (2)0.2328 (3)0.10572 (16)0.0632 (5)
C40.0347 (2)0.2341 (3)0.24210 (16)0.0425 (4)
H4A0.00600.10250.26620.051*
H4B0.05570.32220.17230.051*
C30.7842 (3)0.1089 (3)0.12134 (16)0.0430 (4)
C20.0044 (3)0.3398 (3)0.36024 (17)0.0502 (5)
H2A0.03380.47270.33570.060*
H2B0.15570.36850.38620.060*
N20.3452 (3)0.3409 (3)0.3388 (2)0.0740 (6)
C10.1183 (3)0.2129 (3)0.47147 (19)0.0534 (5)
N10.2152 (3)0.1117 (3)0.55746 (19)0.0798 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0358 (7)0.0354 (7)0.0338 (7)0.0091 (5)0.0008 (5)0.0038 (5)
N50.0430 (7)0.0361 (7)0.0470 (8)0.0091 (6)0.0055 (6)0.0008 (6)
C80.0379 (8)0.0356 (8)0.0347 (8)0.0078 (6)0.0010 (6)0.0049 (7)
C70.0486 (10)0.0386 (9)0.0500 (10)0.0131 (8)0.0032 (8)0.0023 (8)
C60.0409 (8)0.0323 (8)0.0324 (8)0.0096 (6)0.0032 (6)0.0040 (6)
C50.0433 (9)0.0322 (8)0.0452 (9)0.0077 (7)0.0030 (7)0.0004 (7)
N30.0538 (9)0.0568 (10)0.0660 (11)0.0044 (8)0.0037 (8)0.0100 (8)
C40.0348 (8)0.0482 (9)0.0436 (10)0.0118 (7)0.0015 (7)0.0067 (8)
C30.0430 (9)0.0419 (9)0.0407 (9)0.0082 (7)0.0011 (7)0.0053 (7)
C20.0505 (10)0.0462 (10)0.0514 (11)0.0108 (8)0.0123 (8)0.0124 (8)
N20.0836 (13)0.0471 (10)0.0879 (14)0.0269 (9)0.0008 (10)0.0065 (9)
C10.0591 (12)0.0660 (13)0.0442 (11)0.0288 (10)0.0112 (9)0.0204 (10)
N10.0850 (14)0.1093 (17)0.0516 (11)0.0391 (12)0.0047 (10)0.0104 (11)
Geometric parameters (Å, º) top
N4—C51.3509 (19)C5—H5A0.9300
N4—C61.3729 (18)N3—C31.142 (2)
N4—C41.4630 (19)C4—C21.515 (2)
N5—C51.3172 (19)C4—H4A0.9700
N5—C81.3641 (19)C4—H4B0.9700
C8—C61.370 (2)C2—C11.452 (3)
C8—C31.424 (2)C2—H2A0.9700
C7—N21.137 (2)C2—H2B0.9700
C7—C61.416 (2)C1—N11.135 (2)
C5—N4—C6106.18 (12)N4—C4—C2112.63 (13)
C5—N4—C4126.80 (13)N4—C4—H4A109.1
C6—N4—C4126.95 (13)C2—C4—H4A109.1
C5—N5—C8104.35 (13)N4—C4—H4B109.1
N5—C8—C6110.83 (13)C2—C4—H4B109.1
N5—C8—C3122.98 (14)H4A—C4—H4B107.8
C6—C8—C3126.16 (14)N3—C3—C8178.15 (19)
N2—C7—C6178.5 (2)C1—C2—C4112.42 (15)
C8—C6—N4105.61 (13)C1—C2—H2A109.1
C8—C6—C7129.79 (15)C4—C2—H2A109.1
N4—C6—C7124.59 (14)C1—C2—H2B109.1
N5—C5—N4113.02 (14)C4—C2—H2B109.1
N5—C5—H5A123.5H2A—C2—H2B107.9
N4—C5—H5A123.5N1—C1—C2179.1 (2)
C5—N4—C4—C278.0 (2)C8—N5—C5—N40.08 (17)
C6—N4—C4—C2105.74 (18)C5—N5—C8—C3178.04 (15)
C4—N4—C5—N5176.61 (14)C5—N5—C8—C60.40 (17)
C6—N4—C5—N50.25 (18)C1—C2—C4—N461.4 (2)
C4—N4—C6—C73.8 (2)N4—C6—C8—N50.55 (17)
C4—N4—C6—C8176.38 (14)N4—C6—C8—C3177.82 (15)
C5—N4—C6—C7179.31 (15)C7—C6—C8—N5179.22 (16)
C5—N4—C6—C80.48 (16)C7—C6—C8—C32.4 (3)

Experimental details

Crystal data
Chemical formulaC8H5N5
Mr171.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4831 (6), 6.7538 (6), 10.4040 (11)
α, β, γ (°)77.865 (9), 84.297 (8), 74.499 (8)
V3)428.71 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.25 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3805, 2265, 1439
Rint0.020
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.09
No. of reflections2265
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.21

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalRED (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University (No. Xkl09070).

References

First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, N. C., Chu, T. L., Fujii, C. T. & White, J. M. (1955). J. Am. Chem. Soc. 77, 859–861.  CrossRef CAS Web of Science Google Scholar
First citationMartin, R. B. & Edsall, J. T. (1958). J. Am. Chem. Soc. 80, 5033–5035.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalRED. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds