organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-eth­­oxy­phen­yl)-1-methyl-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 15 September 2012; accepted 19 September 2012; online 26 September 2012)

In the title compound, C25H30NO3, a crystallographic mirror plane bis­ects the mol­ecule. Although it is a positional isomer of 2,4-bis(4-eth­oxy­phen­yl)-7-methyl-3-aza­bicyclo­[3.3.1]non­an-9-one [C25H31NO3, Mr = 393.51; Park et al. (2012c[Park, D. H., Ramkumar, V. & Parthiban, P. (2012c). Acta Cryst. E68, o779-o780.]). Acta Cryst. E68, o779–780], its mol­ecular weight is 392.50 due to the 50:50 ratio of the methyl group at bridgehead C atoms. However, the title compound exists in the same twin-chair conformation as its 7-methyl isomer. Also, the 4-eth­oxy­phenyl groups are equatorially oriented on the bicycle as in its isomer. In the title compound, the cyclo­hexanone ring deviates from an ideal chair (total puckering amplitude QT = 0.5390 Å) and the piperidone ring is closer to an ideal chair (QT = 0.6064 Å). These QT values are very similar to those of its isomer. Even though a center of symmetry passes through the 7-methyl analog, the benzene rings are oriented 26.11 (3)° with respect to each other, whereas the orientation is 53.10 (3)° for the title compound. The title compound exhibits inter­molecular N—H⋯O inter­actions [H⋯A = 2.25 (2) Å, versus 2.26 (2) Å for the analog].

Related literature

For the synthesis, stereochemistry and biological activities of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Park et al. (2011a[Park, D. H., Jeong, Y. T. & Parthiban, P. (2011a). J. Mol. Struct. 1005, 31-44.], 2012a[Park, D. H., Venkatesn, J., Kim, S. K. & Parthiban, P. (2012a). Bioorg. Med. Chem. Lett. 22, 6004-6009.]). For analogous structures, see: Park et al. (2012b[Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o2841.], 2012c[Park, D. H., Ramkumar, V. & Parthiban, P. (2012c). Acta Cryst. E68, o779-o780.]); Parthiban et al. (2011b[Parthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475-o1476.], 2011c[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2011c). Acta Cryst. E67, o790.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H30NO3

  • Mr = 392.50

  • Orthorhombic, P n m a

  • a = 11.9280 (4) Å

  • b = 26.1702 (14) Å

  • c = 6.9656 (3) Å

  • V = 2174.37 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.35 × 0.28 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.988

  • 7809 measured reflections

  • 2396 independent reflections

  • 1689 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.06

  • 2396 reflections

  • 147 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.25 (2) 3.105 (2) 180 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Synthesis and stereochemical analysis of the 3-azabicyclononanes are interesting due to their biological actions (Park et al., 2012a). Stereochemical analysis of the biologically active molecules are crucial in drug-design and drug-development programs. Hence, we synthesized the title compound by a modified and an optimized successive double Mannich condensation in one-pot in order to explore its stereochemistry in solid-state.

The detailed analysis and comparison of the torsion angles clearly indicates that the title molecule, C25H30NO3, exists in a twin-chair conformation with an equatorial orientation of the 4-ethoxyphenyl groups on both sides of the secondary amino group.

Further, the Cremer & Pople (Cremer & Pople, 1975) ring puckering parameters calculated for the title compound shows that the piperidone ring adopts a near ideal chair conformation [The total puckering amplitude, QT is 0.6064 Å, the phase angle θ is 175.10° and phi is 359.99°], and the cyclohexane exist in a distorted chair conformation [QT = 0.5390, θ = 9.52° and phi = 60.00°]

The crystal packing of the title compound, 2,4-Bis(4-ethoxyphenyl)-1-methyl-3-azabicyclo[3.3.1]nonan-9-one is stabilized by intermolecular N—H···O interaction (Table 1) as its 7-methyl analog of 2.26 (2) Å (Park et al., 2012c).

Related literature top

For the synthesis, stereochemistry and biological activities of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011a, 2012a). For analogous structures, see: Park et al. (2012b, 2012c); Parthiban et al. (2011b, 2011c). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by a modified and an optimized Mannich condensation in one-pot, using 4-ethoxybenzaldehyde (0.1 mol, 15.018 g/13.91 ml), 2-methylcyclohexanone (0.05 mol, 5.61 g/6.07 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Park et al., 2011a). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C).

Structure description top

Synthesis and stereochemical analysis of the 3-azabicyclononanes are interesting due to their biological actions (Park et al., 2012a). Stereochemical analysis of the biologically active molecules are crucial in drug-design and drug-development programs. Hence, we synthesized the title compound by a modified and an optimized successive double Mannich condensation in one-pot in order to explore its stereochemistry in solid-state.

The detailed analysis and comparison of the torsion angles clearly indicates that the title molecule, C25H30NO3, exists in a twin-chair conformation with an equatorial orientation of the 4-ethoxyphenyl groups on both sides of the secondary amino group.

Further, the Cremer & Pople (Cremer & Pople, 1975) ring puckering parameters calculated for the title compound shows that the piperidone ring adopts a near ideal chair conformation [The total puckering amplitude, QT is 0.6064 Å, the phase angle θ is 175.10° and phi is 359.99°], and the cyclohexane exist in a distorted chair conformation [QT = 0.5390, θ = 9.52° and phi = 60.00°]

The crystal packing of the title compound, 2,4-Bis(4-ethoxyphenyl)-1-methyl-3-azabicyclo[3.3.1]nonan-9-one is stabilized by intermolecular N—H···O interaction (Table 1) as its 7-methyl analog of 2.26 (2) Å (Park et al., 2012c).

For the synthesis, stereochemistry and biological activities of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011a, 2012a). For analogous structures, see: Park et al. (2012b, 2012c); Parthiban et al. (2011b, 2011c). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids.
[Figure 2] Fig. 2. Intermolecular N—H···O interactions present in the molecule.
2,4-Bis(4-ethoxyphenyl)-1-methyl-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C25H30NO3F(000) = 844
Mr = 392.50Dx = 1.199 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3421 reflections
a = 11.9280 (4) Åθ = 3.0–27.7°
b = 26.1702 (14) ŵ = 0.08 mm1
c = 6.9656 (3) ÅT = 298 K
V = 2174.37 (17) Å3Block, colourless
Z = 40.35 × 0.28 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2396 independent reflections
Radiation source: fine-focus sealed tube1689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1514
Tmin = 0.973, Tmax = 0.988k = 3325
7809 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.3421P]
where P = (Fo2 + 2Fc2)/3
2396 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H30NO3V = 2174.37 (17) Å3
Mr = 392.50Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.9280 (4) ŵ = 0.08 mm1
b = 26.1702 (14) ÅT = 298 K
c = 6.9656 (3) Å0.35 × 0.28 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2396 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1689 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.988Rint = 0.029
7809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
2396 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.55634 (11)0.70312 (5)0.13583 (19)0.0350 (4)
H10.51800.70370.26030.042*
C20.46403 (11)0.70192 (6)0.0240 (2)0.0419 (4)
C30.39793 (16)0.75000.0051 (3)0.0444 (6)
C40.57166 (18)0.75000.2899 (3)0.0487 (6)
H4A0.58260.75000.42790.058*
H4B0.64500.75000.22960.058*
C50.50932 (12)0.70215 (7)0.2323 (2)0.0511 (5)
H5A0.55910.67310.24820.061*
H5B0.44670.69750.31950.061*
C60.63304 (11)0.65729 (5)0.1344 (2)0.0360 (4)
C70.72669 (13)0.65458 (6)0.0151 (2)0.0445 (4)
H70.74150.68140.06870.053*
C80.79747 (13)0.61325 (6)0.0183 (2)0.0464 (4)
H80.85890.61230.06380.056*
C90.77820 (12)0.57292 (6)0.1430 (2)0.0415 (4)
C100.68483 (13)0.57420 (6)0.2607 (2)0.0468 (4)
H100.66970.54710.34330.056*
C110.61410 (12)0.61616 (6)0.2545 (2)0.0440 (4)
H110.55150.61670.33410.053*
C120.84722 (15)0.49538 (6)0.2799 (2)0.0564 (5)
H12A0.77870.47600.26260.068*
H12B0.84570.51070.40660.068*
C130.94628 (17)0.46091 (7)0.2622 (3)0.0651 (5)
H13A0.94920.44710.13470.098*
H13B0.93980.43350.35330.098*
H13C1.01350.47990.28730.098*
C140.3844 (2)0.66095 (12)0.0007 (4)0.0431 (7)0.50
H14A0.35800.66040.12950.065*0.50
H14B0.41990.62900.03010.065*0.50
H14C0.32220.66620.08600.065*0.50
N10.62172 (13)0.75000.1205 (2)0.0327 (4)
O10.29964 (12)0.75000.0541 (3)0.0738 (6)
O20.85487 (9)0.53399 (4)0.13792 (16)0.0533 (3)
H1N0.6708 (19)0.75000.211 (3)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (6)0.0380 (9)0.0340 (8)0.0042 (7)0.0035 (5)0.0000 (6)
C20.0309 (7)0.0523 (11)0.0425 (8)0.0109 (7)0.0005 (6)0.0055 (7)
C30.0272 (9)0.0715 (17)0.0343 (11)0.0000.0034 (7)0.000
C40.0385 (10)0.0767 (17)0.0310 (11)0.0000.0012 (8)0.000
C50.0407 (7)0.0714 (12)0.0411 (9)0.0051 (9)0.0045 (6)0.0121 (8)
C60.0358 (7)0.0327 (9)0.0394 (8)0.0046 (6)0.0022 (6)0.0006 (6)
C70.0460 (8)0.0342 (9)0.0534 (9)0.0021 (7)0.0130 (7)0.0109 (7)
C80.0432 (8)0.0413 (10)0.0545 (9)0.0028 (8)0.0149 (7)0.0096 (7)
C90.0458 (8)0.0326 (8)0.0462 (9)0.0019 (7)0.0037 (6)0.0032 (7)
C100.0517 (9)0.0389 (9)0.0498 (9)0.0017 (8)0.0087 (7)0.0134 (7)
C110.0420 (8)0.0440 (10)0.0459 (9)0.0016 (7)0.0109 (6)0.0079 (7)
C120.0664 (11)0.0465 (11)0.0563 (10)0.0091 (9)0.0037 (8)0.0147 (8)
C130.0728 (12)0.0554 (12)0.0672 (12)0.0188 (10)0.0016 (9)0.0133 (9)
C140.0435 (15)0.0369 (18)0.0488 (17)0.0060 (14)0.0005 (13)0.0014 (14)
N10.0284 (8)0.0319 (10)0.0379 (9)0.0000.0063 (7)0.000
O10.0278 (7)0.1163 (17)0.0774 (12)0.0000.0094 (7)0.000
O20.0591 (7)0.0415 (7)0.0594 (7)0.0129 (6)0.0127 (5)0.0146 (5)
Geometric parameters (Å, º) top
C1—N11.4577 (16)C8—C91.386 (2)
C1—C61.5084 (19)C8—H80.9300
C1—C21.5661 (19)C9—O21.3696 (18)
C1—H10.9800C9—C101.383 (2)
C2—C141.442 (3)C10—C111.385 (2)
C2—C31.4986 (19)C10—H100.9300
C2—C51.549 (2)C11—H110.9300
C3—O11.221 (2)C12—O21.4169 (18)
C3—C2i1.4986 (19)C12—C131.492 (2)
C4—C51.511 (2)C12—H12A0.9700
C4—C5i1.511 (2)C12—H12B0.9700
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—H5A0.9700C13—H13C0.9600
C5—H5B0.9700C14—H14A0.9600
C6—C111.3817 (19)C14—H14B0.9600
C6—C71.394 (2)C14—H14C0.9600
C7—C81.372 (2)N1—C1i1.4577 (16)
C7—H70.9300N1—H1N0.86 (2)
N1—C1—C6110.13 (11)C7—C8—H8119.7
N1—C1—C2109.94 (12)C9—C8—H8119.7
C6—C1—C2113.94 (11)O2—C9—C10124.82 (13)
N1—C1—H1107.5O2—C9—C8116.07 (12)
C6—C1—H1107.5C10—C9—C8119.11 (14)
C2—C1—H1107.5C9—C10—C11119.40 (14)
C14—C2—C3105.22 (16)C9—C10—H10120.3
C14—C2—C5109.76 (16)C11—C10—H10120.3
C3—C2—C5107.89 (14)C6—C11—C10122.48 (13)
C14—C2—C1113.46 (17)C6—C11—H11118.8
C3—C2—C1104.89 (12)C10—C11—H11118.8
C5—C2—C1114.89 (11)O2—C12—C13108.82 (14)
O1—C3—C2122.89 (8)O2—C12—H12A109.9
O1—C3—C2i122.89 (8)C13—C12—H12A109.9
C2—C3—C2i114.19 (16)O2—C12—H12B109.9
C5—C4—C5i112.00 (17)C13—C12—H12B109.9
C5—C4—H4A109.2H12A—C12—H12B108.3
C5i—C4—H4A109.2C12—C13—H13A109.5
C5—C4—H4B109.2C12—C13—H13B109.5
C5i—C4—H4B109.2H13A—C13—H13B109.5
H4A—C4—H4B107.9C12—C13—H13C109.5
C4—C5—C2115.05 (14)H13A—C13—H13C109.5
C4—C5—H5A108.5H13B—C13—H13C109.5
C2—C5—H5A108.5C2—C14—H14A109.5
C4—C5—H5B108.5C2—C14—H14B109.5
C2—C5—H5B108.5H14A—C14—H14B109.5
H5A—C5—H5B107.5C2—C14—H14C109.5
C11—C6—C7116.88 (13)H14A—C14—H14C109.5
C11—C6—C1121.07 (12)H14B—C14—H14C109.5
C7—C6—C1122.04 (12)C1—N1—C1i114.64 (14)
C8—C7—C6121.55 (14)C1—N1—H1N108.1 (7)
C8—C7—H7119.2C1i—N1—H1N108.1 (7)
C6—C7—H7119.2C9—O2—C12117.99 (12)
C7—C8—C9120.56 (13)
N1—C1—C2—C14170.69 (17)N1—C1—C6—C739.74 (18)
C6—C1—C2—C1465.14 (19)C2—C1—C6—C784.32 (17)
N1—C1—C2—C356.39 (15)C11—C6—C7—C80.7 (2)
C6—C1—C2—C3179.44 (11)C1—C6—C7—C8178.36 (14)
N1—C1—C2—C561.89 (17)C6—C7—C8—C90.7 (2)
C6—C1—C2—C562.28 (17)C7—C8—C9—O2178.74 (14)
C14—C2—C3—O15.4 (3)C7—C8—C9—C101.8 (2)
C5—C2—C3—O1122.6 (2)O2—C9—C10—C11179.14 (14)
C1—C2—C3—O1114.5 (2)C8—C9—C10—C111.4 (2)
C14—C2—C3—C2i176.73 (16)C7—C6—C11—C101.1 (2)
C5—C2—C3—C2i59.60 (19)C1—C6—C11—C10178.02 (14)
C1—C2—C3—C2i63.32 (19)C9—C10—C11—C60.0 (2)
C5i—C4—C5—C246.7 (2)C6—C1—N1—C1i175.39 (10)
C14—C2—C5—C4166.11 (18)C2—C1—N1—C1i58.26 (18)
C3—C2—C5—C451.97 (17)C10—C9—O2—C128.8 (2)
C1—C2—C5—C464.62 (19)C8—C9—O2—C12171.71 (15)
N1—C1—C6—C11139.30 (14)C13—C12—O2—C9173.00 (14)
C2—C1—C6—C1196.64 (16)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.86 (2)2.25 (2)3.105 (2)180 (2)
Symmetry code: (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H30NO3
Mr392.50
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)11.9280 (4), 26.1702 (14), 6.9656 (3)
V3)2174.37 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.973, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7809, 2396, 1689
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.06
No. of reflections2396
No. of parameters147
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.25 (2)3.105 (2)179.7 (19)
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Jeong, Y. T. & Parthiban, P. (2011a). J. Mol. Struct. 1005, 31–44.  Web of Science CrossRef CAS Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o2841.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012c). Acta Cryst. E68, o779–o780.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Venkatesn, J., Kim, S. K. & Parthiban, P. (2012a). Bioorg. Med. Chem. Lett. 22, 6004–6009.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2011c). Acta Cryst. E67, o790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475–o1476.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds