organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(3RS,4RS)-1-Benzyl-4-methyl­piperidin-3-yl]-5-nitro-1-phenyl­sulfonyl-1H-pyrrolo­[2,3-b]pyridine-4-amine

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bInstitute of Organic Chemistry, University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 17 September 2012; accepted 20 September 2012; online 29 September 2012)

The pyrrolo­pyridine system in the title compound, C27H29N5O4S, is oriented at a dihedral angle of 71.20 (5)° towards the phenyl ring of the tosyl residue and at a dihedral angle of 45.43 (4)° towards the benzyl group. The structure shows an intra­molecular N—H⋯O and a weak intra­molecular N—H⋯N hydrogen bond. The piperidine ring adopts a chair conformation, with the cis substituents displaying a torsion angle of −54.59 (18)°.

Related literature

For inhibitors of Janus kinases, see: Hoffmann-La Roche AG (2011[Hoffmann-La Roche AG (2011). World Patent WO 2011/086053 A1.]).

[Scheme 1]

Experimental

Crystal data
  • C27H29N5O4S

  • Mr = 519.61

  • Monoclinic, P 21 /c

  • a = 17.2626 (10) Å

  • b = 11.5411 (8) Å

  • c = 13.1313 (9) Å

  • β = 98.443 (3)°

  • V = 2587.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 173 K

  • 0.50 × 0.20 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • 25499 measured reflections

  • 6140 independent reflections

  • 4286 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.02

  • 6140 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N23—H23⋯O21 0.92 1.95 2.6322 (17) 130
N23—H23⋯N26 0.92 2.35 2.8235 (18) 111

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

N-(1-benzyl-4-methylpiperidin-3-yl)-5-nitro-1-tosyl-1H- pyrrolo[2,3-b]pyridine-4-amine is an important intermediate in the synthesis of tricyclic heterocyclic compounds being inhibitors of Janus kinases (Hoffmann-La Roche AG, 2011).

The tosyl residue is oriented in a dihedral angle of 71.2 (0)° towards the pyrrolo-pyridine system and shows a dihedral angle of 45.4 (0)° to the benzyl group (Fig. 1). The methylene group in the title compound presents an angle of 112.0 (5)° between the phenyl and piperidine residue. The equatorial methyl and the axial pyrrolo-pyridine substituent of the piperidine show a torsion angle of 54.5 (9)°. The intramolecular hydrogen bonds N23—H23···O21 1.95 Å and N23—H23···N26 2.35 Å stabilize the molecular conformation (Tabl. 1).

Related literature top

For inhibitors of Janus kinases, see: Hoffmann-La Roche AG (2011).

Experimental top

The compound was prepared by nucleophilic substitution of 4-chloro-5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridine with cis-1-benzyl-3-aminopiperidine in the presence of tertiary amine base. A mixture of 4-chloro-5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridine (0.624 g, 1.778 mmol), cis-1-benzyl-3-aminopiperidine-dihydrobromide (0.781 g, 2.133 mmol) and diisopropylethylamine (1.9 ml, 10.666 mmol) in 2-propanol (3 ml) was heated in a microwave reactor at 353 K for 1 h. The reaction media was concentrated under vacuum and the product precipitated from methanol to yield 0.855 g (92%) of the title compound. Crystals were obtained by recrystallization in methanol at 277 K.

Refinement top

All hydrogen atom were located in a difference Fourier map. Nevertheless, they were refined using a riding model with N—H = 0.92 Å, C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The isotropic displacement parameters were set to 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

N-(1-benzyl-4-methylpiperidin-3-yl)-5-nitro-1-tosyl-1H- pyrrolo[2,3-b]pyridine-4-amine is an important intermediate in the synthesis of tricyclic heterocyclic compounds being inhibitors of Janus kinases (Hoffmann-La Roche AG, 2011).

The tosyl residue is oriented in a dihedral angle of 71.2 (0)° towards the pyrrolo-pyridine system and shows a dihedral angle of 45.4 (0)° to the benzyl group (Fig. 1). The methylene group in the title compound presents an angle of 112.0 (5)° between the phenyl and piperidine residue. The equatorial methyl and the axial pyrrolo-pyridine substituent of the piperidine show a torsion angle of 54.5 (9)°. The intramolecular hydrogen bonds N23—H23···O21 1.95 Å and N23—H23···N26 2.35 Å stabilize the molecular conformation (Tabl. 1).

For inhibitors of Janus kinases, see: Hoffmann-La Roche AG (2011).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are represented as dashed lines.
N-[(3RS,4RS)-1-Benzyl-4-methylpiperidin-3-yl]- 5-nitro-1-phenylsulfonyl-1H-pyrrolo[2,3-b]pyridine-4-amine top
Crystal data top
C27H29N5O4SF(000) = 1096
Mr = 519.61Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5909 reflections
a = 17.2626 (10) Åθ = 2.4–27.4°
b = 11.5411 (8) ŵ = 0.17 mm1
c = 13.1313 (9) ÅT = 173 K
β = 98.443 (3)°Plate, yellow
V = 2587.8 (3) Å30.50 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
4286 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.035
Graphite monochromatorθmax = 27.9°, θmin = 2.1°
CCD scanh = 2222
25499 measured reflectionsk = 1215
6140 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2813P]
where P = (Fo2 + 2Fc2)/3
6140 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C27H29N5O4SV = 2587.8 (3) Å3
Mr = 519.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.2626 (10) ŵ = 0.17 mm1
b = 11.5411 (8) ÅT = 173 K
c = 13.1313 (9) Å0.50 × 0.20 × 0.08 mm
β = 98.443 (3)°
Data collection top
Bruker APEXII
diffractometer
4286 reflections with I > 2σ(I)
25499 measured reflectionsRint = 0.035
6140 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
6140 reflectionsΔρmin = 0.35 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25756 (7)0.38269 (12)0.13550 (10)0.0321 (3)
C20.30403 (10)0.38599 (15)0.05701 (12)0.0341 (4)
H20.28510.38920.01460.041*
C30.37997 (10)0.38382 (15)0.09919 (12)0.0328 (4)
H30.42340.38590.06240.039*
C40.38439 (9)0.37788 (13)0.20968 (11)0.0261 (3)
C50.44591 (8)0.37411 (12)0.29571 (11)0.0249 (3)
C60.41701 (9)0.37441 (13)0.39271 (11)0.0257 (3)
C70.33663 (9)0.37230 (14)0.39967 (12)0.0303 (3)
H70.32200.37140.46660.036*
N80.27971 (8)0.37148 (12)0.32056 (10)0.0339 (3)
C90.30663 (9)0.37682 (13)0.22942 (12)0.0279 (3)
S100.15864 (2)0.37973 (4)0.11393 (3)0.03343 (12)
O110.13997 (7)0.40111 (11)0.00604 (9)0.0432 (3)
O120.13179 (7)0.45534 (11)0.18685 (10)0.0425 (3)
C130.13327 (9)0.23692 (14)0.13895 (12)0.0302 (3)
C140.12459 (9)0.15711 (16)0.05869 (13)0.0347 (4)
H140.13800.17740.00660.042*
C150.09609 (10)0.04762 (15)0.07540 (13)0.0362 (4)
H150.08980.00730.02090.043*
C160.07654 (9)0.01692 (15)0.17065 (13)0.0341 (4)
C170.08870 (10)0.09693 (16)0.25082 (13)0.0369 (4)
H170.07730.07570.31690.044*
C180.11701 (9)0.20656 (16)0.23604 (13)0.0350 (4)
H180.12530.26040.29130.042*
C190.04180 (12)0.10047 (17)0.18642 (16)0.0490 (5)
H19A0.01850.13230.11970.073*
H19B0.00130.09270.23100.073*
H19C0.08300.15260.21880.073*
N200.46852 (8)0.37004 (11)0.48969 (10)0.0286 (3)
O210.54003 (7)0.35745 (12)0.49078 (9)0.0436 (3)
O220.44069 (7)0.37755 (12)0.57041 (9)0.0450 (3)
N230.52257 (7)0.37061 (11)0.28858 (10)0.0283 (3)
H230.55780.36110.34780.034*
C240.56077 (9)0.35130 (14)0.19766 (12)0.0283 (3)
H240.52130.32240.13990.034*
C250.62288 (9)0.25754 (14)0.22722 (13)0.0318 (4)
H25A0.59790.18670.24980.038*
H25B0.64860.23770.16690.038*
N260.68097 (7)0.30109 (11)0.31072 (10)0.0298 (3)
C270.72550 (9)0.39528 (15)0.27122 (13)0.0344 (4)
H27A0.74830.36820.21050.041*
H27B0.76880.41980.32480.041*
C280.67087 (9)0.49632 (15)0.24132 (13)0.0344 (4)
H28A0.70010.55840.21150.041*
H28B0.65280.52760.30400.041*
C290.59923 (9)0.46310 (14)0.16334 (12)0.0304 (3)
H290.61820.44590.09660.036*
C300.54279 (11)0.56531 (15)0.14510 (14)0.0387 (4)
H30A0.52070.58150.20820.058*
H30B0.50040.54630.08940.058*
H30C0.57100.63370.12590.058*
C310.73136 (10)0.20900 (15)0.36030 (14)0.0388 (4)
H31A0.76430.17820.31080.047*
H31B0.69830.14490.37950.047*
C320.78383 (9)0.25168 (15)0.45576 (13)0.0334 (4)
C330.75798 (10)0.33474 (16)0.51998 (13)0.0364 (4)
H330.70630.36450.50440.044*
C340.80684 (11)0.37471 (16)0.60677 (13)0.0378 (4)
H340.78870.43230.64920.045*
C350.88179 (10)0.33065 (16)0.63118 (14)0.0409 (4)
H350.91500.35700.69080.049*
C360.90805 (10)0.24790 (17)0.56794 (15)0.0446 (5)
H360.95950.21740.58430.054*
C370.85963 (10)0.20925 (16)0.48089 (15)0.0401 (4)
H370.87850.15300.43780.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0277 (7)0.0408 (8)0.0267 (7)0.0019 (6)0.0003 (6)0.0009 (6)
C20.0370 (9)0.0408 (10)0.0240 (8)0.0038 (7)0.0026 (7)0.0002 (7)
C30.0321 (8)0.0401 (10)0.0266 (8)0.0028 (7)0.0053 (7)0.0004 (7)
C40.0281 (8)0.0253 (8)0.0246 (8)0.0015 (6)0.0029 (6)0.0010 (6)
C50.0271 (8)0.0212 (7)0.0261 (8)0.0015 (6)0.0031 (6)0.0003 (6)
C60.0292 (8)0.0237 (8)0.0236 (8)0.0009 (6)0.0023 (6)0.0002 (6)
C70.0322 (8)0.0351 (9)0.0244 (8)0.0023 (6)0.0068 (6)0.0003 (6)
N80.0293 (7)0.0435 (9)0.0291 (7)0.0015 (6)0.0044 (6)0.0005 (6)
C90.0277 (8)0.0290 (8)0.0257 (8)0.0007 (6)0.0002 (6)0.0005 (6)
S100.0277 (2)0.0367 (2)0.0334 (2)0.00088 (16)0.00356 (16)0.00128 (17)
O110.0400 (7)0.0491 (8)0.0362 (7)0.0019 (5)0.0088 (5)0.0102 (6)
O120.0333 (6)0.0407 (7)0.0520 (8)0.0052 (5)0.0013 (6)0.0075 (6)
C130.0230 (7)0.0383 (9)0.0280 (8)0.0023 (6)0.0000 (6)0.0009 (7)
C140.0335 (9)0.0442 (10)0.0269 (8)0.0011 (7)0.0059 (7)0.0008 (7)
C150.0361 (9)0.0387 (10)0.0341 (9)0.0031 (7)0.0061 (7)0.0058 (7)
C160.0255 (8)0.0384 (10)0.0382 (10)0.0057 (7)0.0037 (7)0.0053 (7)
C170.0329 (9)0.0509 (11)0.0271 (9)0.0018 (7)0.0044 (7)0.0052 (7)
C180.0310 (8)0.0471 (10)0.0257 (8)0.0011 (7)0.0002 (7)0.0051 (7)
C190.0497 (11)0.0448 (12)0.0529 (12)0.0017 (9)0.0094 (9)0.0082 (9)
N200.0339 (7)0.0263 (7)0.0251 (7)0.0004 (5)0.0027 (6)0.0007 (5)
O210.0289 (6)0.0701 (9)0.0303 (6)0.0010 (6)0.0004 (5)0.0047 (6)
O220.0461 (7)0.0661 (9)0.0230 (6)0.0075 (6)0.0057 (5)0.0026 (6)
N230.0244 (6)0.0367 (8)0.0235 (7)0.0032 (5)0.0028 (5)0.0005 (5)
C240.0263 (8)0.0338 (9)0.0254 (8)0.0031 (6)0.0054 (6)0.0048 (6)
C250.0286 (8)0.0313 (9)0.0355 (9)0.0028 (6)0.0048 (7)0.0061 (7)
N260.0254 (6)0.0303 (7)0.0331 (7)0.0020 (5)0.0024 (6)0.0021 (6)
C270.0266 (8)0.0424 (10)0.0349 (9)0.0085 (7)0.0066 (7)0.0012 (7)
C280.0357 (9)0.0336 (9)0.0350 (9)0.0102 (7)0.0086 (7)0.0011 (7)
C290.0332 (8)0.0337 (9)0.0252 (8)0.0025 (7)0.0072 (7)0.0010 (6)
C300.0468 (10)0.0344 (10)0.0359 (10)0.0006 (8)0.0095 (8)0.0027 (7)
C310.0342 (9)0.0367 (10)0.0440 (10)0.0054 (7)0.0014 (8)0.0058 (8)
C320.0311 (8)0.0334 (9)0.0358 (9)0.0017 (7)0.0051 (7)0.0041 (7)
C330.0315 (8)0.0428 (10)0.0347 (9)0.0042 (7)0.0043 (7)0.0028 (8)
C340.0443 (10)0.0403 (10)0.0295 (9)0.0015 (8)0.0078 (7)0.0027 (7)
C350.0402 (10)0.0455 (11)0.0341 (9)0.0083 (8)0.0037 (8)0.0096 (8)
C360.0310 (9)0.0505 (12)0.0500 (11)0.0037 (8)0.0014 (8)0.0118 (9)
C370.0358 (9)0.0386 (10)0.0457 (11)0.0069 (7)0.0049 (8)0.0036 (8)
Geometric parameters (Å, º) top
N1—C91.3916 (19)N23—C241.4633 (19)
N1—C21.396 (2)N23—H230.9205
N1—S101.6899 (13)C24—C251.533 (2)
C2—C31.346 (2)C24—C291.548 (2)
C2—H20.9500C24—H241.0000
C3—C41.443 (2)C25—N261.462 (2)
C3—H30.9500C25—H25A0.9900
C4—C91.404 (2)C25—H25B0.9900
C4—C51.433 (2)N26—C311.464 (2)
C5—N231.3409 (19)N26—C271.469 (2)
C5—C61.435 (2)C27—C281.515 (2)
C6—C71.404 (2)C27—H27A0.9900
C6—N201.4431 (19)C27—H27B0.9900
C7—N81.321 (2)C28—C291.534 (2)
C7—H70.9500C28—H28A0.9900
N8—C91.347 (2)C28—H28B0.9900
S10—O121.4224 (13)C29—C301.526 (2)
S10—O111.4276 (12)C29—H291.0000
S10—C131.7488 (17)C30—H30A0.9800
C13—C181.390 (2)C30—H30B0.9800
C13—C141.391 (2)C30—H30C0.9800
C14—C151.385 (2)C31—C321.517 (2)
C14—H140.9500C31—H31A0.9900
C15—C161.388 (2)C31—H31B0.9900
C15—H150.9500C32—C371.391 (2)
C16—C171.393 (2)C32—C331.393 (2)
C16—C191.508 (3)C33—C341.393 (2)
C17—C181.380 (2)C33—H330.9500
C17—H170.9500C34—C351.383 (3)
C18—H180.9500C34—H340.9500
C19—H19A0.9800C35—C361.385 (3)
C19—H19B0.9800C35—H350.9500
C19—H19C0.9800C36—C371.387 (3)
N20—O221.2294 (17)C36—H360.9500
N20—O211.2409 (17)C37—H370.9500
C9—N1—C2108.33 (13)N23—C24—C29111.99 (13)
C9—N1—S10128.04 (11)C25—C24—C29110.39 (13)
C2—N1—S10123.56 (11)N23—C24—H24109.3
C3—C2—N1109.03 (14)C25—C24—H24109.3
C3—C2—H2125.5C29—C24—H24109.3
N1—C2—H2125.5N26—C25—C24108.94 (13)
C2—C3—C4108.60 (14)N26—C25—H25A109.9
C2—C3—H3125.7C24—C25—H25A109.9
C4—C3—H3125.7N26—C25—H25B109.9
C9—C4—C5118.18 (13)C24—C25—H25B109.9
C9—C4—C3105.97 (13)H25A—C25—H25B108.3
C5—C4—C3135.85 (14)C25—N26—C31112.41 (13)
N23—C5—C4124.80 (14)C25—N26—C27109.05 (13)
N23—C5—C6122.51 (13)C31—N26—C27112.75 (13)
C4—C5—C6112.69 (13)N26—C27—C28108.85 (13)
C7—C6—C5122.25 (14)N26—C27—H27A109.9
C7—C6—N20115.39 (13)C28—C27—H27A109.9
C5—C6—N20122.27 (13)N26—C27—H27B109.9
N8—C7—C6125.24 (15)C28—C27—H27B109.9
N8—C7—H7117.4H27A—C27—H27B108.3
C6—C7—H7117.4C27—C28—C29113.01 (14)
C7—N8—C9112.61 (13)C27—C28—H28A109.0
N8—C9—N1123.02 (14)C29—C28—H28A109.0
N8—C9—C4128.92 (14)C27—C28—H28B109.0
N1—C9—C4108.06 (13)C29—C28—H28B109.0
O12—S10—O11120.90 (8)H28A—C28—H28B107.8
O12—S10—N1107.21 (7)C30—C29—C28110.19 (14)
O11—S10—N1103.78 (7)C30—C29—C24113.50 (13)
O12—S10—C13109.66 (8)C28—C29—C24110.62 (13)
O11—S10—C13108.85 (8)C30—C29—H29107.4
N1—S10—C13105.21 (7)C28—C29—H29107.4
C18—C13—C14120.95 (16)C24—C29—H29107.4
C18—C13—S10119.98 (13)C29—C30—H30A109.5
C14—C13—S10118.93 (13)C29—C30—H30B109.5
C15—C14—C13119.02 (16)H30A—C30—H30B109.5
C15—C14—H14120.5C29—C30—H30C109.5
C13—C14—H14120.5H30A—C30—H30C109.5
C14—C15—C16120.97 (16)H30B—C30—H30C109.5
C14—C15—H15119.5N26—C31—C32112.05 (14)
C16—C15—H15119.5N26—C31—H31A109.2
C15—C16—C17118.82 (16)C32—C31—H31A109.2
C15—C16—C19120.47 (16)N26—C31—H31B109.2
C17—C16—C19120.71 (16)C32—C31—H31B109.2
C18—C17—C16121.24 (16)H31A—C31—H31B107.9
C18—C17—H17119.4C37—C32—C33118.20 (16)
C16—C17—H17119.4C37—C32—C31120.57 (16)
C17—C18—C13118.91 (16)C33—C32—C31121.22 (14)
C17—C18—H18120.5C32—C33—C34120.92 (16)
C13—C18—H18120.5C32—C33—H33119.5
C16—C19—H19A109.5C34—C33—H33119.5
C16—C19—H19B109.5C35—C34—C33120.08 (17)
H19A—C19—H19B109.5C35—C34—H34120.0
C16—C19—H19C109.5C33—C34—H34120.0
H19A—C19—H19C109.5C34—C35—C36119.47 (17)
H19B—C19—H19C109.5C34—C35—H35120.3
O22—N20—O21120.82 (13)C36—C35—H35120.3
O22—N20—C6119.35 (13)C35—C36—C37120.35 (16)
O21—N20—C6119.82 (13)C35—C36—H36119.8
C5—N23—C24128.99 (13)C37—C36—H36119.8
C5—N23—H23118.8C36—C37—C32120.97 (18)
C24—N23—H23110.5C36—C37—H37119.5
N23—C24—C25106.45 (13)C32—C37—H37119.5
C9—N1—C2—C30.75 (19)C14—C15—C16—C172.3 (2)
S10—N1—C2—C3177.98 (12)C14—C15—C16—C19176.94 (16)
N1—C2—C3—C40.49 (19)C15—C16—C17—C182.3 (2)
C2—C3—C4—C90.05 (18)C19—C16—C17—C18176.92 (16)
C2—C3—C4—C5179.48 (17)C16—C17—C18—C130.2 (2)
C9—C4—C5—N23177.61 (14)C14—C13—C18—C172.8 (2)
C3—C4—C5—N233.0 (3)S10—C13—C18—C17172.83 (12)
C9—C4—C5—C62.37 (19)C7—C6—N20—O227.8 (2)
C3—C4—C5—C6177.00 (17)C5—C6—N20—O22175.66 (14)
N23—C5—C6—C7176.77 (14)C7—C6—N20—O21171.34 (14)
C4—C5—C6—C73.2 (2)C5—C6—N20—O215.2 (2)
N23—C5—C6—N200.5 (2)C4—C5—N23—C2410.8 (2)
C4—C5—C6—N20179.48 (13)C6—C5—N23—C24169.18 (14)
C5—C6—C7—N81.0 (2)C5—N23—C24—C25130.72 (15)
N20—C6—C7—N8177.51 (14)C5—N23—C24—C29108.55 (17)
C6—C7—N8—C92.1 (2)N23—C24—C25—N2662.82 (15)
C7—N8—C9—N1176.84 (14)C29—C24—C25—N2658.93 (17)
C7—N8—C9—C43.0 (2)C24—C25—N26—C31166.21 (13)
C2—N1—C9—N8179.41 (15)C24—C25—N26—C2767.99 (16)
S10—N1—C9—N82.3 (2)C25—N26—C27—C2865.74 (16)
C2—N1—C9—C40.71 (17)C31—N26—C27—C28168.66 (13)
S10—N1—C9—C4177.77 (11)N26—C27—C28—C2955.95 (18)
C5—C4—C9—N80.7 (2)C27—C28—C29—C30174.23 (14)
C3—C4—C9—N8179.72 (16)C27—C28—C29—C2447.91 (18)
C5—C4—C9—N1179.14 (13)N23—C24—C29—C3054.59 (18)
C3—C4—C9—N10.40 (17)C25—C24—C29—C30173.00 (13)
C9—N1—S10—O1244.89 (16)N23—C24—C29—C2869.86 (16)
C2—N1—S10—O12138.45 (14)C25—C24—C29—C2848.55 (17)
C9—N1—S10—O11173.91 (13)C25—N26—C31—C32172.15 (14)
C2—N1—S10—O119.43 (16)C27—N26—C31—C3264.09 (18)
C9—N1—S10—C1371.80 (15)N26—C31—C32—C37144.17 (16)
C2—N1—S10—C13104.86 (14)N26—C31—C32—C3335.3 (2)
O12—S10—C13—C1821.20 (15)C37—C32—C33—C340.3 (3)
O11—S10—C13—C18155.49 (12)C31—C32—C33—C34179.11 (16)
N1—S10—C13—C1893.81 (13)C32—C33—C34—C351.0 (3)
O12—S10—C13—C14154.50 (12)C33—C34—C35—C360.9 (3)
O11—S10—C13—C1420.22 (15)C34—C35—C36—C370.1 (3)
N1—S10—C13—C1490.49 (13)C35—C36—C37—C320.6 (3)
C18—C13—C14—C152.8 (2)C33—C32—C37—C360.5 (3)
S10—C13—C14—C15172.86 (12)C31—C32—C37—C36179.90 (16)
C13—C14—C15—C160.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O210.921.952.6322 (17)130
N23—H23···N260.922.352.8235 (18)111

Experimental details

Crystal data
Chemical formulaC27H29N5O4S
Mr519.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)17.2626 (10), 11.5411 (8), 13.1313 (9)
β (°) 98.443 (3)
V3)2587.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.50 × 0.20 × 0.08
Data collection
DiffractometerBruker APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25499, 6140, 4286
Rint0.035
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.02
No. of reflections6140
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.35

Computer programs: APEX2 (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O210.921.952.6322 (17)130
N23—H23···N260.922.352.8235 (18)111
 

Acknowledgements

The authors thank Maria Leticia Barbosa, Matthias Gehringer and Peter Keck for suggestions and comments.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoffmann-La Roche AG (2011). World Patent WO 2011/086053 A1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds