organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)quinoline-4-carb­­oxy­lic acid

aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: r.alqawasmeh@ju.edu.jo

(Received 27 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title compound, C17H13NO2, the dihedral angle between the plane of the carb­oxy group and the quinoline mean plane is 45.05 (13)°, and that between the toluene ring mean plane and the quinoline mean plane is 25.29 (7)°. In the crystal, molecules are linked via O—H⋯.N hydrogen bonds, forming chains propagating along the b-axis direction. These chain are linked via C—H⋯O interactions, forming two-dimensional networks lying parallel to the ab plane.

Related literature

For the importance of the quinoline carb­oxy­lic acid analogues in the synthesis of various compounds with pharmacological properties, see: Deady et al. (1999[Deady, L. W., Desneves, J., Kaye, A. J., Thompson, M., Finlay, G. L., Bagvley, B. C. & Denny, W. A. (1999). Bioorg. Med. Chem. 7, 2801-2809.], 2011[Deady, L. W., Desneves, J., Kaye, A. J., Finlay, G. J., Bagvley, B. C. & Denny, W. A. (2011). Bioorg. Med. Chem. 9, 445-452.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399-404.]); Tseng et al. (2008[Tseng, C.-H., Chen, Y.-L., Lu, P.-J., ang, C.-N. & Tzeng, C.-C. (2008). Bioorg. Med. Chem. 16, 3153-3161.]); Kravchenko et al. (2005[Kravchenko, D., Kazakova, Y. A., Kysil, M., Tkachenko, S. E., Malarchuk, S., Okun, I. M., Balakin, K. V. & Ivachtchenko, A. V. (2005). J. Med. Chem. 48, 3680-3683.]). The structure of the related compound 2-phenyl­quinoline-4-carboxlic acid is described by Blackburn et al. (1996[Blackburn, A. C., Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 409-411.]). For a description of puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For synthetic preparation, see: Pfitzinger (1886[Pfitzinger, W. (1886). J. Prakt. Chem. 33, 100.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2

  • Mr = 263.28

  • Monoclinic, P 21 /c

  • a = 4.1001 (6) Å

  • b = 15.3464 (11) Å

  • c = 20.3037 (17) Å

  • β = 90.859 (9)°

  • V = 1277.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.70 × 0.08 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.992, Tmax = 0.999

  • 4867 measured reflections

  • 2238 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.126

  • S = 1.04

  • 2238 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.89 (3) 1.89 (3) 2.763 (2) 168 (2)
C3—H3⋯O1ii 0.93 2.51 3.233 (2) 135
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Quinoline derivatives are widely used as synthons for biologically important compounds (Tseng et al., 2008), (Kravchenko et al., 2005). In our group this moiety was used to synthesize new antitumor as well as antibacterial agents. The title molecule is shown in Fig. 1 with the numbering scheme. The dihedral angle between the plane of the carboxyl group and the quinoline mean plane is 45.05 (13)° and that between the toluene ring mean plane and the quinoline mean plane is 25.29 (7)°. The total puckering amplitude, Q, (Cremer & Pople, 1975) for the quinoline ring in the title compound is 0.044 (2)Å in the title compound as compared with the value of 0.080 (3) Å in the closely related compound 2-phenylquinoline-4-carboxlic acid (Blackburn et al., 1996). There is a hydrogen bond between the carboxylic acid oxygen atom, O1 and N1 in the quinoline ring, Table 1, Figure 2. In addition the molecules are linked by a weak C-H..O interaction between C3 and O1, Table 1. There is ππ stacking between molecules Molecules are stacked above and below one another with unit translation along the a-axis so that rings containing N1 stack above those containing N1, the same applies to the rings containing C1 and C12. This results in ππ stacking between the molecules: i) between rings containing N1 (centroid Cg1) [Cg1···Cg1(-1+x, y, z), centroid to centroid distance: 4.1001 (13) Å, perpendicular distance between rings: 3.7681 (8) Å slippage: 1.616Å] and ii) between rings containing C1, (centroid Cg2), [Cg2···Cg2(-1+x ,y, z), centroid to centroid distance 4.1000 (14) Å, perpendicular distance between rings 3.3521 (8) Å, slippage 2.361Å] and iii) between rings containing C12 (centroid Cg3) Cg3···Cg3 (-1+x, y, z), [centroid to centroid) distance 4.1003 (17) Å, perpendicular distance between rings 3.7411 (11)Å, slippage 1.678Å].

Related literature top

For the importance of the quinoline carboxylic acid analogues in the synthesis of various compounds with pharmacological properties, see: Deady et al. (1999, 2011); Kalluraya & Sreenivasa (1998); Tseng et al. (2008); Kravchenko et al. (2005). The structure of the related compound 2-phenylquinoline-4-carboxlic acid is described by Blackburn et al. (1996). For a description of puckering analysis, see: Cremer & Pople (1975). For synthetic preparation, see: Pfitzinger (1886).

Experimental top

The title compound was synthesized according to Pfitzinger reaction (Pfitzinger, 1886). Herein, we use the microwave technology for this synthesis, in a typical procedure: a mixture of isatin (1 mmole), acetophenone (1.05 equivalents) and potassium hydroxide (10 equivalents) in aqueous ethanol (10 ml) was placed in a closed vessel and irradiated with MW for 12 minutes at 140°C. The reaction mixture was acidified with acetic acid and the product was recrystallized from ethanol to produce white crystals with a melting point of 214–216 °C. Crystal with two different morphologies were found, cubic crystals which did not produce good diffraction and needle-shaped crystals. A large needle crystal was selected since the others were too small to provide good diffraction data.

Refinement top

All H atoms attached to C atoms were treated as riding atoms with C—H(aromatic), 0.93Å and C—H(methyl), 0.96Å, with Uiso = 1.2Ueq().

The H atom attached to the carboxylic -OH was located on a difference map and refined isotropically.

The positions of the methyl and hydroxyl hydrogen were checked on a final difference map.

Structure description top

Quinoline derivatives are widely used as synthons for biologically important compounds (Tseng et al., 2008), (Kravchenko et al., 2005). In our group this moiety was used to synthesize new antitumor as well as antibacterial agents. The title molecule is shown in Fig. 1 with the numbering scheme. The dihedral angle between the plane of the carboxyl group and the quinoline mean plane is 45.05 (13)° and that between the toluene ring mean plane and the quinoline mean plane is 25.29 (7)°. The total puckering amplitude, Q, (Cremer & Pople, 1975) for the quinoline ring in the title compound is 0.044 (2)Å in the title compound as compared with the value of 0.080 (3) Å in the closely related compound 2-phenylquinoline-4-carboxlic acid (Blackburn et al., 1996). There is a hydrogen bond between the carboxylic acid oxygen atom, O1 and N1 in the quinoline ring, Table 1, Figure 2. In addition the molecules are linked by a weak C-H..O interaction between C3 and O1, Table 1. There is ππ stacking between molecules Molecules are stacked above and below one another with unit translation along the a-axis so that rings containing N1 stack above those containing N1, the same applies to the rings containing C1 and C12. This results in ππ stacking between the molecules: i) between rings containing N1 (centroid Cg1) [Cg1···Cg1(-1+x, y, z), centroid to centroid distance: 4.1001 (13) Å, perpendicular distance between rings: 3.7681 (8) Å slippage: 1.616Å] and ii) between rings containing C1, (centroid Cg2), [Cg2···Cg2(-1+x ,y, z), centroid to centroid distance 4.1000 (14) Å, perpendicular distance between rings 3.3521 (8) Å, slippage 2.361Å] and iii) between rings containing C12 (centroid Cg3) Cg3···Cg3 (-1+x, y, z), [centroid to centroid) distance 4.1003 (17) Å, perpendicular distance between rings 3.7411 (11)Å, slippage 1.678Å].

For the importance of the quinoline carboxylic acid analogues in the synthesis of various compounds with pharmacological properties, see: Deady et al. (1999, 2011); Kalluraya & Sreenivasa (1998); Tseng et al. (2008); Kravchenko et al. (2005). The structure of the related compound 2-phenylquinoline-4-carboxlic acid is described by Blackburn et al. (1996). For a description of puckering analysis, see: Cremer & Pople (1975). For synthetic preparation, see: Pfitzinger (1886).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. The thermal ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram showing the one dimensional hydrogen bonded chains. Hydrogen atoms not involved in the hydrogen bonding are omitted for clarity.
2-(4-Methylphenyl)quinoline-4-carboxylic acid top
Crystal data top
C17H13NO2F(000) = 552
Mr = 263.28Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1144 reflections
a = 4.1001 (6) Åθ = 3.0–29.0°
b = 15.3464 (11) ŵ = 0.09 mm1
c = 20.3037 (17) ÅT = 291 K
β = 90.859 (9)°Needle, clear colourless
V = 1277.4 (2) Å30.70 × 0.08 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2238 independent reflections
Radiation source: Enhance (Mo) X-ray Source1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 44
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
k = 1812
Tmin = 0.992, Tmax = 0.999l = 2415
4867 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.213P]
where P = (Fo2 + 2Fc2)/3
2238 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H13NO2V = 1277.4 (2) Å3
Mr = 263.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1001 (6) ŵ = 0.09 mm1
b = 15.3464 (11) ÅT = 291 K
c = 20.3037 (17) Å0.70 × 0.08 × 0.05 mm
β = 90.859 (9)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2238 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
1747 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.999Rint = 0.025
4867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2238 reflectionsΔρmin = 0.24 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5305 (4)0.25205 (9)0.25810 (7)0.0455 (4)
O20.7609 (5)0.28629 (9)0.16337 (8)0.0636 (6)
N10.3552 (4)0.57466 (9)0.24364 (7)0.0347 (4)
C10.0757 (5)0.69209 (12)0.02784 (10)0.0371 (5)
C20.1462 (5)0.71004 (12)0.09272 (10)0.0385 (5)
H20.27860.75740.10240.046*
C30.0247 (5)0.65926 (12)0.14342 (9)0.0350 (5)
H30.07400.67340.18670.042*
C40.1703 (5)0.58721 (11)0.13094 (9)0.0316 (5)
C50.2352 (6)0.56779 (12)0.06552 (9)0.0382 (5)
H50.36180.51940.05560.046*
C60.1145 (5)0.61934 (13)0.01517 (10)0.0398 (5)
H60.16150.60510.02820.048*
C70.3111 (5)0.53556 (11)0.18595 (9)0.0315 (5)
C80.3996 (5)0.44729 (11)0.17666 (9)0.0346 (5)
H80.36580.42140.13570.041*
C90.5335 (5)0.39967 (11)0.22678 (9)0.0331 (5)
C100.5825 (5)0.43954 (11)0.28941 (9)0.0346 (5)
C110.4852 (6)0.52799 (12)0.29539 (9)0.0365 (5)
C120.5238 (7)0.57039 (13)0.35660 (10)0.0529 (7)
H120.45890.62810.36120.064*
C130.6553 (8)0.52727 (14)0.40883 (11)0.0630 (8)
H130.67670.55550.44920.076*
C140.7593 (7)0.44087 (14)0.40289 (11)0.0585 (7)
H140.85270.41260.43900.070*
C150.7249 (6)0.39806 (13)0.34481 (10)0.0456 (6)
H150.79600.34070.34140.055*
C160.6231 (5)0.30697 (12)0.21252 (10)0.0360 (5)
C170.2037 (7)0.74933 (14)0.02685 (11)0.0532 (6)
H17A0.29770.71370.06100.064*
H17B0.02780.78300.04440.064*
H17C0.36700.78780.01000.064*
H10.582 (7)0.1965 (19)0.2521 (12)0.072 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0703 (12)0.0208 (7)0.0457 (9)0.0014 (7)0.0106 (8)0.0032 (6)
O20.1040 (16)0.0342 (8)0.0534 (10)0.0071 (9)0.0301 (10)0.0010 (7)
N10.0480 (11)0.0239 (8)0.0324 (9)0.0006 (7)0.0012 (8)0.0016 (7)
C10.0379 (13)0.0319 (11)0.0414 (12)0.0059 (9)0.0056 (9)0.0034 (9)
C20.0379 (13)0.0281 (10)0.0493 (13)0.0039 (9)0.0034 (10)0.0002 (9)
C30.0385 (13)0.0307 (10)0.0360 (11)0.0017 (9)0.0016 (9)0.0031 (8)
C40.0364 (12)0.0229 (9)0.0356 (11)0.0058 (8)0.0009 (9)0.0002 (8)
C50.0476 (14)0.0283 (10)0.0388 (12)0.0018 (9)0.0017 (10)0.0030 (8)
C60.0489 (14)0.0389 (11)0.0315 (11)0.0006 (10)0.0002 (9)0.0002 (9)
C70.0371 (12)0.0237 (9)0.0338 (11)0.0038 (8)0.0043 (9)0.0013 (8)
C80.0467 (13)0.0237 (10)0.0332 (11)0.0016 (9)0.0003 (9)0.0018 (8)
C90.0396 (13)0.0227 (9)0.0369 (11)0.0029 (8)0.0030 (9)0.0010 (8)
C100.0440 (13)0.0225 (9)0.0371 (11)0.0047 (9)0.0003 (9)0.0021 (8)
C110.0520 (14)0.0238 (10)0.0338 (11)0.0029 (9)0.0004 (9)0.0029 (8)
C120.090 (2)0.0286 (11)0.0396 (13)0.0023 (12)0.0062 (12)0.0028 (9)
C130.110 (2)0.0386 (13)0.0395 (13)0.0017 (14)0.0164 (13)0.0051 (10)
C140.092 (2)0.0380 (12)0.0446 (14)0.0000 (13)0.0220 (13)0.0045 (10)
C150.0641 (16)0.0280 (10)0.0444 (13)0.0025 (10)0.0095 (11)0.0026 (9)
C160.0462 (14)0.0246 (10)0.0373 (11)0.0013 (9)0.0015 (10)0.0011 (8)
C170.0620 (17)0.0482 (13)0.0490 (13)0.0059 (12)0.0083 (12)0.0107 (10)
Geometric parameters (Å, º) top
O1—C161.312 (2)C8—C91.362 (3)
O1—H10.89 (3)C8—H80.9300
O2—C161.197 (2)C9—C101.423 (3)
N1—C71.326 (2)C9—C161.499 (3)
N1—C111.372 (2)C10—C151.411 (3)
C1—C21.381 (3)C10—C111.421 (3)
C1—C61.388 (3)C11—C121.410 (3)
C1—C171.504 (3)C12—C131.355 (3)
C2—C31.378 (3)C12—H120.9300
C2—H20.9300C13—C141.399 (3)
C3—C41.390 (3)C13—H130.9300
C3—H30.9300C14—C151.355 (3)
C4—C51.391 (3)C14—H140.9300
C4—C71.480 (3)C15—H150.9300
C5—C61.379 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—C81.416 (3)
C16—O1—H1116.7 (16)C10—C9—C16123.30 (18)
C7—N1—C11119.10 (15)C15—C10—C11118.45 (17)
C2—C1—C6117.62 (18)C15—C10—C9124.72 (17)
C2—C1—C17120.81 (19)C11—C10—C9116.82 (17)
C6—C1—C17121.57 (19)N1—C11—C12118.12 (17)
C3—C2—C1121.42 (18)N1—C11—C10122.65 (17)
C3—C2—H2119.3C12—C11—C10119.23 (18)
C1—C2—H2119.3C13—C12—C11120.2 (2)
C2—C3—C4121.07 (18)C13—C12—H12119.9
C2—C3—H3119.5C11—C12—H12119.9
C4—C3—H3119.5C12—C13—C14120.9 (2)
C3—C4—C5117.60 (18)C12—C13—H13119.5
C3—C4—C7120.50 (16)C14—C13—H13119.5
C5—C4—C7121.87 (17)C15—C14—C13120.5 (2)
C6—C5—C4120.90 (19)C15—C14—H14119.8
C6—C5—H5119.6C13—C14—H14119.8
C4—C5—H5119.6C14—C15—C10120.7 (2)
C5—C6—C1121.37 (18)C14—C15—H15119.6
C5—C6—H6119.3C10—C15—H15119.6
C1—C6—H6119.3O2—C16—O1124.26 (18)
N1—C7—C8121.25 (18)O2—C16—C9122.20 (17)
N1—C7—C4118.09 (16)O1—C16—C9113.53 (17)
C8—C7—C4120.65 (17)C1—C17—H17A109.5
C9—C8—C7121.01 (18)C1—C17—H17B109.5
C9—C8—H8119.5H17A—C17—H17B109.5
C7—C8—H8119.5C1—C17—H17C109.5
C8—C9—C10119.15 (16)H17A—C17—H17C109.5
C8—C9—C16117.55 (17)H17B—C17—H17C109.5
C6—C1—C2—C31.9 (3)C16—C9—C10—C151.2 (3)
C17—C1—C2—C3178.5 (2)C8—C9—C10—C110.2 (3)
C1—C2—C3—C40.9 (3)C16—C9—C10—C11179.99 (19)
C2—C3—C4—C50.6 (3)C7—N1—C11—C12178.7 (2)
C2—C3—C4—C7177.28 (18)C7—N1—C11—C101.6 (3)
C3—C4—C5—C61.1 (3)C15—C10—C11—N1177.7 (2)
C7—C4—C5—C6176.78 (19)C9—C10—C11—N11.2 (3)
C4—C5—C6—C10.1 (3)C15—C10—C11—C122.0 (3)
C2—C1—C6—C51.4 (3)C9—C10—C11—C12179.1 (2)
C17—C1—C6—C5179.0 (2)N1—C11—C12—C13179.1 (2)
C11—N1—C7—C80.9 (3)C10—C11—C12—C130.6 (4)
C11—N1—C7—C4179.92 (17)C11—C12—C13—C141.0 (4)
C3—C4—C7—N125.0 (3)C12—C13—C14—C151.2 (4)
C5—C4—C7—N1152.79 (19)C13—C14—C15—C100.3 (4)
C3—C4—C7—C8155.78 (19)C11—C10—C15—C141.9 (4)
C5—C4—C7—C826.4 (3)C9—C10—C15—C14179.3 (2)
N1—C7—C8—C90.1 (3)C8—C9—C16—O244.3 (3)
C4—C7—C8—C9179.09 (18)C10—C9—C16—O2135.5 (2)
C7—C8—C9—C100.4 (3)C8—C9—C16—O1134.5 (2)
C7—C8—C9—C16179.40 (18)C10—C9—C16—O145.7 (3)
C8—C9—C10—C15178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.89 (3)1.89 (3)2.763 (2)168 (2)
C3—H3···O1ii0.932.513.233 (2)135
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H13NO2
Mr263.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)4.1001 (6), 15.3464 (11), 20.3037 (17)
β (°) 90.859 (9)
V3)1277.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.70 × 0.08 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.992, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
4867, 2238, 1747
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.04
No. of reflections2238
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.89 (3)1.89 (3)2.763 (2)168 (2)
C3—H3···O1ii0.932.513.233 (2)135
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was carried out during sabbatical leave granted to MAK during the academic year 2011–2012.

References

First citationBlackburn, A. C., Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 409–411.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDeady, L. W., Desneves, J., Kaye, A. J., Finlay, G. J., Bagvley, B. C. & Denny, W. A. (2011). Bioorg. Med. Chem. 9, 445–452.  Web of Science CrossRef Google Scholar
First citationDeady, L. W., Desneves, J., Kaye, A. J., Thompson, M., Finlay, G. L., Bagvley, B. C. & Denny, W. A. (1999). Bioorg. Med. Chem. 7, 2801–2809.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKravchenko, D., Kazakova, Y. A., Kysil, M., Tkachenko, S. E., Malarchuk, S., Okun, I. M., Balakin, K. V. & Ivachtchenko, A. V. (2005). J. Med. Chem. 48, 3680–3683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPfitzinger, W. (1886). J. Prakt. Chem. 33, 100.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTseng, C.-H., Chen, Y.-L., Lu, P.-J., ang, C.-N. & Tzeng, C.-C. (2008). Bioorg. Med. Chem. 16, 3153–3161.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds