organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-4-Chloro-2-[({2-[(3-chloro-6-hy­dr­oxy-2,4-di­methyl­benz­yl)(meth­yl)amino]­prop­yl}(meth­yl)amino)­meth­yl]-3,5-di­methyl­phenol

aDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

(Received 7 September 2012; accepted 18 September 2012; online 26 September 2012)

The title compound, C23H32Cl2N2O2, a potential chiral ligand for coordination chemistry, was prepared by a two-step reaction. The mol­ecule is located on a crystallographic centre of inversion. As a result, the methyl group bonded to the methyl­ene group is disordered over two equally occupied positions, sharing the same site as the H atom of the chiral C atom. As a further consequence of the crystallographic centrosymmetry, the 1,2-diamino­propane unit adopts an anti­periplanar conformation and the two benzene rings are coplanar. The central chain is in an all-trans arrangement. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring motif. A C—H⋯π inter­action links the mol­ecules into one-dimensional chains along the [001] direction.

Related literature

For the synthesis of the title compound, see: Rivera et al. (2010[Rivera, A., Rojas, J. J., Salazar-Barrios, J., Maldonado, M. & Ríos-Motta, J. (2010). Molecules, 15, 4102-4110.]); Burke (1949[Burke, W. J. (1949). J. Am. Chem. Soc. 71, 609-612.]). For the uses of tetra­hydro­salens in coordination chemistry, see: Atwood (1997[Atwood, D. A. (1997). Coord. Chem. Rev. 165, 267-296.]). For related structures, see: Rivera et al. (2011[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o1391.]); Xu et al. (2009[Xu, Y.-M., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o3151.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H32Cl2N2O2

  • Mr = 439.41

  • Monoclinic, P 21 /n

  • a = 9.5011 (8) Å

  • b = 11.9060 (13) Å

  • c = 9.9824 (9) Å

  • β = 90.348 (7)°

  • V = 1129.19 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 173 K

  • 0.25 × 0.22 × 0.08 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.927, Tmax = 0.976

  • 11151 measured reflections

  • 2055 independent reflections

  • 1758 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.159

  • S = 1.14

  • 2055 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 (5) 1.87 (5) 2.614 (3) 150 (4)
C1—H1BCg1i 0.99 2.83 3.709 (3) 148
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compound I, C23H32Cl2N2O2, a new chiral N,N-dimethylated tetrahydrosalen (H2[H4]salen) was obtained by reacting the bis-benzoxazine (II) with sodium borohydride using our procedure reported earlier (Rivera et al. 2010). The intermediate II was prepared by condensing 1,2-diaminepropane with formaldehyde and 4-chloro-3,5-dimethylphenol employing the general procedure of Burke (1949). The synthetic route for the title compound reported herein is illustrated in Fig. 1. The molecular structure and atom-numbering scheme for title compound, C23H32Cl2N2O2, are shown in Fig. 2. The bond/newcifs lengths (Allen et al., 1987) and angles are normal and similar to those observed for related structures (Rivera et al. 2010; Xu et al. 2009). In the title molecule, the 1,2-propanodiamine unit adopts an antiperiplanar conformation with an N1—C3—C3a—N1a torsion angle of -180.0 (2)°. As a consequence of this conformation, both benzene rings are parallel to each other. The central chain –CH2—N(CH3)—CH2—CH(CH3)—N(CH3)—CH2– is found in an all-trans arrangement. The two symmetry-related methyl substituents in the molecule (C2 and C2i, (i) = 1 - x, 1 - y, 2 - z) are orientated in an antiperiplanar arrangement (pseudo torsion angle CH3—N···N—CH3 = 180.00°). The C2 and C4 methyl groups are almost (+)-synclinal [C2—N1—C3—C4 torsion angle = 48.0 (4)°], a conformation stabilized by an intramolecular O—H···N hydrogen bond. The relationship of C4 methyl to C2i is defined by the pseudo torsion angle C4—C3···N1a—C2a, which is 114.64 (3)°.

The intramolecular O—H···N hydrogen bond (Table 1) makes an S(6) ring motif (Bernstein et al., 1995), contrasting with the related structure (Xu et al., 2009). In the crystal structure, intermolecular C1—H1B···Cg1(1 - x, 1 - y, 1 - z) interaction links the molecules into one-dimensional chains. C1···Cg1 is 3.709 (3)Å, H1···Cg1 is 2.83Å and the angle at H1 is 148°. Cg1 is the centroid of the C11–C16 ring.

Related literature top

For the synthesis of the title compound, see: Rivera et al. (2010); Burke (1949). For the uses of tetrahydrosalens in coordination chemistry, see: Atwood (1997). For a related structure, see: Rivera et al. (2011); Xu et al. (2009). For reference bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

Sodium borohydride (3.0 mmol, 0.11 g) was added to a solution of 3,3'-(propane-1,2-diyl)bis(6-chloro-5,7-dimethyl-3,4-dihydro-2 h-benzo[e][1,3]oxazina) (435 mg, 1 mmol) (II) in ethanol (15 ml), and the mixture was stirred magnetically for 30 min at room temperature. After completion of the reaction, the mixture was poured into ice-cold water, neutralized with ammonium chloride (12 ml), and extracted with CHCl3 (3 × 10 ml). The combined extracts were dried over anhydrous Na2SO4 and evaporated. Recrystallization from ethanol afforded (I) in 91% yield. m.p. 424 K.

Refinement top

All H atoms bonded to C were refined using a riding model with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl] with C—H ranging from 0.95 Å to 0.99 Å. The hydroxyl H atom was isotropically refined. The methyl group C4 is disordered over two centrosymmerically related positions each with a 50% occupancy. The completeness of the data is 99.4% with eleven reflections missing for a full completeness. Since no reflection was omitted on purpose, this is most probably due to the data collection strategy using an area detector.

Structure description top

Compound I, C23H32Cl2N2O2, a new chiral N,N-dimethylated tetrahydrosalen (H2[H4]salen) was obtained by reacting the bis-benzoxazine (II) with sodium borohydride using our procedure reported earlier (Rivera et al. 2010). The intermediate II was prepared by condensing 1,2-diaminepropane with formaldehyde and 4-chloro-3,5-dimethylphenol employing the general procedure of Burke (1949). The synthetic route for the title compound reported herein is illustrated in Fig. 1. The molecular structure and atom-numbering scheme for title compound, C23H32Cl2N2O2, are shown in Fig. 2. The bond/newcifs lengths (Allen et al., 1987) and angles are normal and similar to those observed for related structures (Rivera et al. 2010; Xu et al. 2009). In the title molecule, the 1,2-propanodiamine unit adopts an antiperiplanar conformation with an N1—C3—C3a—N1a torsion angle of -180.0 (2)°. As a consequence of this conformation, both benzene rings are parallel to each other. The central chain –CH2—N(CH3)—CH2—CH(CH3)—N(CH3)—CH2– is found in an all-trans arrangement. The two symmetry-related methyl substituents in the molecule (C2 and C2i, (i) = 1 - x, 1 - y, 2 - z) are orientated in an antiperiplanar arrangement (pseudo torsion angle CH3—N···N—CH3 = 180.00°). The C2 and C4 methyl groups are almost (+)-synclinal [C2—N1—C3—C4 torsion angle = 48.0 (4)°], a conformation stabilized by an intramolecular O—H···N hydrogen bond. The relationship of C4 methyl to C2i is defined by the pseudo torsion angle C4—C3···N1a—C2a, which is 114.64 (3)°.

The intramolecular O—H···N hydrogen bond (Table 1) makes an S(6) ring motif (Bernstein et al., 1995), contrasting with the related structure (Xu et al., 2009). In the crystal structure, intermolecular C1—H1B···Cg1(1 - x, 1 - y, 1 - z) interaction links the molecules into one-dimensional chains. C1···Cg1 is 3.709 (3)Å, H1···Cg1 is 2.83Å and the angle at H1 is 148°. Cg1 is the centroid of the C11–C16 ring.

For the synthesis of the title compound, see: Rivera et al. (2010); Burke (1949). For the uses of tetrahydrosalens in coordination chemistry, see: Atwood (1997). For a related structure, see: Rivera et al. (2011); Xu et al. (2009). For reference bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthetic route for the title compound.
[Figure 2] Fig. 2. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only one of the two positions of the disordered methyl group is shown. Hydrogen bonds are drawn as dashed lines.
rac-4-Chloro-2-[({2-[(3-chloro-6-hydroxy-2,4-dimethylbenzyl)(methyl)amino]propyl}(methyl)amino)methyl]-3,5-dimethylphenol top
Crystal data top
C23H32Cl2N2O2F(000) = 468
Mr = 439.41Dx = 1.292 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11821 reflections
a = 9.5011 (8) Åθ = 2.4–28.1°
b = 11.9060 (13) ŵ = 0.31 mm1
c = 9.9824 (9) ÅT = 173 K
β = 90.348 (7)°Plate, colourless
V = 1129.19 (19) Å30.25 × 0.22 × 0.08 mm
Z = 2
Data collection top
Stoe IPDS II two-circle
diffractometer
2055 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source1758 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.074
ω scansθmax = 25.3°, θmin = 3.4°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1111
Tmin = 0.927, Tmax = 0.976k = 1414
11151 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.952P]
where P = (Fo2 + 2Fc2)/3
2055 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H32Cl2N2O2V = 1129.19 (19) Å3
Mr = 439.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.5011 (8) ŵ = 0.31 mm1
b = 11.9060 (13) ÅT = 173 K
c = 9.9824 (9) Å0.25 × 0.22 × 0.08 mm
β = 90.348 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2055 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
1758 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.976Rint = 0.074
11151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.59 e Å3
2055 reflectionsΔρmin = 0.35 e Å3
144 parameters
Special details top

Experimental. 1H NMR (400.1 MHz, CDCl3): δ 1.07 (d, 3J = 6.6 Hz, 3H), 2.18 (s, 3H),2.25 (s, 3H), 2.30 (s, 6H), 2.31 (s, 6H), 2.35 (dd, 2Jgem = 12.6, 3J = 6.9 Hz, 1H), 2.62 (dd, 2Jgem = 12.6, 3J = 6.7 Hz, 1H), 3.03–3.11 (m, 1H), 3.69 (d, 2Jgem = 14.0, 1H), 3.74 (d, 2Jgem = 14.0, 1H), 3.81 (s, 2H), 6.62 (s, 2H) 13C NMR (100.6 MHz, CDCl3): δ 11.17, 16.74, 16.82, 21.22, 21.24, 35.19, 41.9, 53.68, 54.20, 58.57, 60.32, 116.57, 116.58, 118.48, 118.94, 125.26, 125.39, 133.96, 134.04, 136.62, 136.73, 156.76, 156.78. F T—IR (KBr) (ν, cm-1): 3406 (O—H, broad, m), 2960 (CH3 asym, st), 2922 (CH2 asym, st), 2855 (CH3 sym, st), 2802 (CH2 sym, st), 1613 (–C=C, st), 1320 (C—N, st), 668 (C—Cl, st).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.74219 (10)0.71021 (8)0.25120 (9)0.0590 (3)
N10.5987 (3)0.54354 (18)0.8459 (2)0.0383 (6)
O10.7205 (2)0.39166 (17)0.6972 (3)0.0485 (6)
H10.687 (5)0.421 (4)0.764 (5)0.071 (13)*
C10.5450 (3)0.5882 (3)0.7189 (3)0.0410 (7)
H1A0.53030.67020.72820.049*
H1B0.45250.55350.69920.049*
C20.7218 (4)0.6084 (3)0.8905 (3)0.0479 (8)
H2A0.79450.60570.82140.072*
H2B0.75880.57620.97390.072*
H2C0.69400.68660.90590.072*
C30.4831 (3)0.5398 (2)0.9448 (3)0.0464 (8)
H30.39840.51100.89810.056*
H3'0.46540.61570.98140.056*0.50
C40.4443 (7)0.6608 (5)1.0048 (6)0.0403 (13)0.50
H4A0.51140.68021.07600.060*0.50
H4B0.34890.65881.04160.060*0.50
H4C0.44890.71720.93350.060*0.50
C110.6426 (3)0.5669 (2)0.6023 (3)0.0346 (6)
C120.6469 (3)0.6424 (2)0.4950 (3)0.0370 (6)
C130.7364 (3)0.6175 (2)0.3882 (3)0.0386 (7)
C140.8205 (3)0.5226 (2)0.3842 (3)0.0372 (7)
C150.8119 (3)0.4494 (2)0.4901 (3)0.0411 (7)
H150.86760.38320.48960.049*
C160.7241 (3)0.4695 (2)0.5979 (3)0.0371 (6)
C170.5559 (4)0.7462 (3)0.4936 (4)0.0539 (9)
H17A0.60100.80520.54730.081*
H17B0.46360.72840.53140.081*
H17C0.54400.77250.40120.081*
C180.9182 (3)0.4993 (3)0.2693 (3)0.0506 (8)
H18A0.97150.43050.28740.076*
H18B0.98360.56240.25900.076*
H18C0.86320.49000.18670.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0693 (6)0.0651 (6)0.0429 (5)0.0039 (4)0.0184 (4)0.0072 (4)
N10.0397 (13)0.0333 (12)0.0421 (14)0.0020 (9)0.0198 (11)0.0028 (10)
O10.0586 (14)0.0358 (11)0.0515 (14)0.0070 (9)0.0185 (11)0.0011 (10)
C10.0323 (15)0.0451 (16)0.0457 (18)0.0006 (12)0.0128 (12)0.0010 (13)
C20.0512 (19)0.0565 (18)0.0361 (17)0.0031 (15)0.0128 (14)0.0041 (14)
C30.0454 (18)0.0442 (16)0.0499 (19)0.0062 (13)0.0217 (14)0.0130 (14)
C40.049 (3)0.040 (3)0.032 (3)0.007 (2)0.015 (3)0.008 (2)
C110.0263 (13)0.0379 (14)0.0396 (16)0.0048 (10)0.0067 (11)0.0064 (11)
C120.0332 (14)0.0396 (15)0.0383 (16)0.0025 (11)0.0055 (12)0.0041 (12)
C130.0372 (15)0.0436 (15)0.0350 (16)0.0044 (12)0.0060 (12)0.0047 (12)
C140.0300 (14)0.0469 (16)0.0348 (15)0.0060 (12)0.0059 (11)0.0117 (12)
C150.0362 (15)0.0422 (15)0.0448 (17)0.0034 (12)0.0040 (13)0.0134 (13)
C160.0359 (15)0.0342 (14)0.0413 (16)0.0045 (11)0.0069 (12)0.0036 (12)
C170.061 (2)0.0508 (18)0.050 (2)0.0165 (15)0.0152 (16)0.0071 (15)
C180.0440 (17)0.067 (2)0.0415 (18)0.0017 (15)0.0125 (14)0.0143 (15)
Geometric parameters (Å, º) top
Cl1—C131.758 (3)C4—H4B0.9800
N1—C11.464 (4)C4—H4C0.9800
N1—C21.468 (4)C11—C161.396 (4)
N1—C31.483 (4)C11—C121.399 (4)
O1—C161.358 (4)C12—C131.400 (4)
O1—H10.82 (5)C12—C171.508 (4)
C1—C111.514 (4)C13—C141.385 (4)
C1—H1A0.9900C14—C151.373 (4)
C1—H1B0.9900C14—C181.506 (4)
C2—H2A0.9800C15—C161.386 (4)
C2—H2B0.9800C15—H150.9500
C2—H2C0.9800C17—H17A0.9800
C3—C3i1.486 (6)C17—H17B0.9800
C3—C41.604 (6)C17—H17C0.9800
C3—H30.9886C18—H18A0.9800
C3—H3'0.9905C18—H18B0.9800
C4—H3'0.6186C18—H18C0.9800
C4—H4A0.9800
C1—N1—C2110.1 (2)C16—C11—C12119.5 (3)
C1—N1—C3109.4 (2)C16—C11—C1120.4 (3)
C2—N1—C3113.9 (2)C12—C11—C1120.1 (2)
C16—O1—H1108 (3)C11—C12—C13117.9 (3)
N1—C1—C11113.1 (2)C11—C12—C17121.0 (3)
N1—C1—H1A108.9C13—C12—C17121.1 (3)
C11—C1—H1A108.9C14—C13—C12123.3 (3)
N1—C1—H1B108.9C14—C13—Cl1117.9 (2)
C11—C1—H1B108.9C12—C13—Cl1118.8 (2)
H1A—C1—H1B107.8C15—C14—C13117.3 (3)
N1—C2—H2A109.5C15—C14—C18120.7 (3)
N1—C2—H2B109.5C13—C14—C18122.1 (3)
H2A—C2—H2B109.5C14—C15—C16121.9 (3)
N1—C2—H2C109.5C14—C15—H15119.1
H2A—C2—H2C109.5C16—C15—H15119.1
H2B—C2—H2C109.5O1—C16—C15117.9 (3)
N1—C3—C3i110.8 (3)O1—C16—C11121.9 (3)
N1—C3—C4113.2 (3)C15—C16—C11120.3 (3)
C3i—C3—C4110.2 (4)C12—C17—H17A109.5
N1—C3—H3107.5C12—C17—H17B109.5
C3i—C3—H3107.5H17A—C17—H17B109.5
C4—C3—H3107.4C12—C17—H17C109.5
N1—C3—H3'110.3H17A—C17—H17C109.5
C3i—C3—H3'110.1H17B—C17—H17C109.5
H3—C3—H3'110.5C14—C18—H18A109.5
C3—C4—H4A109.5C14—C18—H18B109.5
C3—C4—H4B109.5H18A—C18—H18B109.5
H4A—C4—H4B109.5C14—C18—H18C109.5
C3—C4—H4C109.5H18A—C18—H18C109.5
H4A—C4—H4C109.5H18B—C18—H18C109.5
H4B—C4—H4C109.5
C2—N1—C1—C1169.4 (3)C11—C12—C13—Cl1179.3 (2)
C3—N1—C1—C11164.7 (2)C17—C12—C13—Cl10.3 (4)
C1—N1—C3—C3i159.9 (3)C12—C13—C14—C151.2 (4)
C2—N1—C3—C3i76.3 (4)Cl1—C13—C14—C15178.2 (2)
C1—N1—C3—C475.7 (4)C12—C13—C14—C18178.6 (3)
C2—N1—C3—C448.0 (4)Cl1—C13—C14—C182.0 (4)
N1—C1—C11—C1633.1 (4)C13—C14—C15—C160.7 (4)
N1—C1—C11—C12149.8 (3)C18—C14—C15—C16179.1 (3)
N1—C3—C3i—N1i180.0 (2)C14—C15—C16—O1178.9 (3)
C16—C11—C12—C131.4 (4)C14—C15—C16—C110.9 (4)
C1—C11—C12—C13178.5 (3)C12—C11—C16—O1177.8 (3)
C16—C11—C12—C17177.5 (3)C1—C11—C16—O10.7 (4)
C1—C11—C12—C170.4 (4)C12—C11—C16—C152.0 (4)
C11—C12—C13—C140.2 (4)C1—C11—C16—C15179.1 (3)
C17—C12—C13—C14179.1 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (5)1.87 (5)2.614 (3)150 (4)
C1—H1B···Cg1ii0.992.833.709 (3)148
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H32Cl2N2O2
Mr439.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.5011 (8), 11.9060 (13), 9.9824 (9)
β (°) 90.348 (7)
V3)1129.19 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.25 × 0.22 × 0.08
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.927, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11151, 2055, 1758
Rint0.074
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.159, 1.14
No. of reflections2055
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.35

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (5)1.87 (5)2.614 (3)150 (4)
C1—H1B···Cg1i0.992.833.709 (3)148
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAtwood, D. A. (1997). Coord. Chem. Rev. 165, 267–296.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurke, W. J. (1949). J. Am. Chem. Soc. 71, 609–612.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o1391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Salazar-Barrios, J., Maldonado, M. & Ríos-Motta, J. (2010). Molecules, 15, 4102–4110.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXu, Y.-M., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o3151.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds