organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 2,2′-bi­pyridine-1,1′-diium dibromide

aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, bFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, and cDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 7 September 2012; accepted 22 September 2012; online 29 September 2012)

In the title mol­ecular salt, C10H10N22+·2Br, the dihedral angle between the aromatic rings is 20.83 (14)° and the N—H groups have a transoid conformaton [N—C—C—N = 158.5 (3)°]. In the crystal, the cations are linked to the anions by two N—H⋯Br and five C—H⋯Br hydrogen bonds, generating corrugated sheets incorporating R21(7), R42(10), R42(11) and two different R42(12) loops. This structure was originally reported by Nakatsu et al. [Acta Cryst (1972), A28, S24], but no atomic coordinates are available.

Related literature

For the previous report of this structure as a conference abstract, see: Nakatsu et al. (1972[Nakatsu, K., Yoshioka, H., Matsui, M., Koda, S. & Ooi, S. (1972). Acta Cryst. A28, S24.]). For related structures of 2,2′-bipyridium dication salts, see: Ma et al. (2000[Ma, G., Ilyukhin, A. & Glaser, J. (2000). Acta Cryst. C56, 1473-1475.]). For structures containing dicationic 2,2′-bipyridyl derivative salts, see: Amarante et al. (2011[Amarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o1903-o1904.]); Eckensberger et al. (2008[Eckensberger, U. D., Lerner, H.-W. & Bolte, M. (2008). Acta Cryst. E64, o1806.]). For structures of monocationic 2,2′-bipyridinium salts, see: Kavitha et al. (2006[Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165-o169.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N22+·2Br

  • Mr = 318.00

  • Monoclinic, P 21 /c

  • a = 7.5568 (6) Å

  • b = 9.7747 (7) Å

  • c = 15.3533 (12) Å

  • β = 95.830 (7)°

  • V = 1128.21 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.15 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent Xcalibur EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.287, Tmax = 0.489

  • 5425 measured reflections

  • 3054 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.073

  • S = 1.03

  • 3054 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br2 0.86 2.37 3.178 (3) 156
N2—H2A⋯Br1i 0.86 2.35 3.145 (3) 154
C1—H1B⋯Br1 0.93 2.83 3.611 (4) 143
C9—H9A⋯Br2 0.93 2.81 3.675 (4) 155
C6—H6A⋯Br2i 0.93 2.84 3.619 (4) 142
C4—H4A⋯Br1i 0.93 2.86 3.697 (4) 150
C3—H3A⋯Br1ii 0.93 2.85 3.677 (4) 149
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-bipyridine can form two types of salts monocationic, see for example (Kavitha et al., 2006) or dicationic bipyridinium (see for example Ma et al., 2000). Herein we report the title salt, (I), Figure 1. This structure was reported by Nakatsu et al. (1972), but no atomic coordinates are available. The bipyridinium cation in (I) has a transoid configuration with the N—C—C—N torsion angle is 158.5 (3)°, and the C—C bond distance between the two rings being 1.464 (4) Å. Within the dication, geometrical dimensions are in normal range and agree with reported values (Ma et al., 2000; Eckensberger et al. 2008; Amarante et al. 2011).

The ions in (I) are linked by a combination of seven hydrogen bonds of the types N—H···Br and C—H···Br, Table 1, into complex corrugated sheets, Figure 2. These sheets composed of R12(7), R24(10), R24(11) and two different R24(12) graph set motifs (Bernstein et al. 1995), Figure 3. With the overall coordination around each bromide anion being 4 (three C—H···Br and one N—H···Br interactions), Figure 3.

Related literature top

For the previous report of this structure as a conference abstract, see: Nakatsu et al. (1972). For related structures of 2,2'-bipyridium dication salts, see: Ma et al. (2000). For structures containing dicationic 2,2'-bipyridyl derivative salts, see: Amarante et al. (2011); Eckensberger et al. (2008). For structures of monocationic 2,2'-bipyridinium salts, see: Kavitha et al. (2006). For ring motifs, see: Bernstein et al. (1995).

Experimental top

A solution of MnCl2 (0.1258 g, 1 mmol) dissolved in 95% EtOH (10 ml) solution was added to a mixture of 2,2'-bipyridine (0.1562 g, 1 mmol) dissolved in 95% EtOH (10 ml) and 60% HBr (2 ml). The resulting mixture was heated to few min, then treated with molecular bromine (2–3 drops), then refluxed for 1.5 hr. On slow evaporation at room temperature colourless chunks of the title salt were formed.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å, with the Uiso(H) were allowed at 1.2Ueq(N/C).

Structure description top

2,2'-bipyridine can form two types of salts monocationic, see for example (Kavitha et al., 2006) or dicationic bipyridinium (see for example Ma et al., 2000). Herein we report the title salt, (I), Figure 1. This structure was reported by Nakatsu et al. (1972), but no atomic coordinates are available. The bipyridinium cation in (I) has a transoid configuration with the N—C—C—N torsion angle is 158.5 (3)°, and the C—C bond distance between the two rings being 1.464 (4) Å. Within the dication, geometrical dimensions are in normal range and agree with reported values (Ma et al., 2000; Eckensberger et al. 2008; Amarante et al. 2011).

The ions in (I) are linked by a combination of seven hydrogen bonds of the types N—H···Br and C—H···Br, Table 1, into complex corrugated sheets, Figure 2. These sheets composed of R12(7), R24(10), R24(11) and two different R24(12) graph set motifs (Bernstein et al. 1995), Figure 3. With the overall coordination around each bromide anion being 4 (three C—H···Br and one N—H···Br interactions), Figure 3.

For the previous report of this structure as a conference abstract, see: Nakatsu et al. (1972). For related structures of 2,2'-bipyridium dication salts, see: Ma et al. (2000). For structures containing dicationic 2,2'-bipyridyl derivative salts, see: Amarante et al. (2011); Eckensberger et al. (2008). For structures of monocationic 2,2'-bipyridinium salts, see: Kavitha et al. (2006). For ring motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular stucture of the title salt with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title salt showing the sheets of cations···anions hydrogen bonded species. Interspecies C/N–H···Br hydrogen bonds are shown as dashed lines. H atoms have been omitted for clarity, except for those involved in hydrogen bonds (shown as dashed lines).
[Figure 3] Fig. 3. A view of one hydrogen bonded sheet contains the different graph-set motifs in the title salt.
2,2'-Bipyridine-1,1'-diium; dibromide top
Crystal data top
C10H10N22+·2BrF(000) = 616
Mr = 318.00Dx = 1.872 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1832 reflections
a = 7.5568 (6) Åθ = 2.9–29.1°
b = 9.7747 (7) ŵ = 7.15 mm1
c = 15.3533 (12) ÅT = 293 K
β = 95.830 (7)°Chunk, colourless
V = 1128.21 (15) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent Xcalibur EOS
diffractometer
3054 independent reflections
Radiation source: Enhance (Mo) x-ray source1884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0534 pixels mm-1θmax = 29.2°, θmin = 3.4°
ω scansh = 710
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1310
Tmin = 0.287, Tmax = 0.489l = 2116
5425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
3054 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C10H10N22+·2BrV = 1128.21 (15) Å3
Mr = 318.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5568 (6) ŵ = 7.15 mm1
b = 9.7747 (7) ÅT = 293 K
c = 15.3533 (12) Å0.20 × 0.15 × 0.10 mm
β = 95.830 (7)°
Data collection top
Agilent Xcalibur EOS
diffractometer
3054 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1884 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.489Rint = 0.032
5425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
3054 reflectionsΔρmin = 0.57 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23397 (5)0.03486 (4)0.67326 (2)0.04534 (13)
N10.4480 (4)0.4858 (3)0.63133 (16)0.0384 (7)
H1A0.53660.45800.60510.046*
C10.3257 (6)0.3947 (4)0.6491 (2)0.0507 (10)
H1B0.33690.30360.63300.061*
N20.5392 (4)0.8449 (3)0.61771 (15)0.0369 (7)
H2A0.43780.87140.63230.044*
C20.1841 (6)0.4356 (4)0.6909 (2)0.0554 (11)
H2B0.09500.37390.70130.066*
Br20.74405 (5)0.29766 (4)0.55966 (2)0.04749 (13)
C30.1749 (5)0.5695 (4)0.7175 (2)0.0532 (11)
H3A0.08220.59790.74880.064*
C40.3033 (5)0.6619 (4)0.6978 (2)0.0429 (9)
H4A0.29680.75260.71540.051*
C50.4402 (4)0.6197 (3)0.65239 (19)0.0314 (7)
C60.6477 (5)0.9395 (4)0.5912 (2)0.0446 (9)
H6A0.61411.03110.58980.054*
C70.8083 (6)0.9019 (4)0.5662 (2)0.0505 (10)
H7A0.88510.96710.54700.061*
C80.8553 (5)0.7657 (4)0.5698 (2)0.0509 (10)
H8A0.96410.73830.55240.061*
C90.7398 (5)0.6683 (4)0.5997 (2)0.0449 (9)
H9A0.77230.57650.60350.054*
C100.5767 (4)0.7105 (3)0.62330 (19)0.0324 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0395 (2)0.0378 (2)0.0598 (2)0.00431 (18)0.01032 (17)0.00318 (18)
N10.0397 (19)0.0320 (17)0.0441 (16)0.0004 (14)0.0068 (13)0.0021 (13)
C10.058 (3)0.035 (2)0.058 (2)0.013 (2)0.001 (2)0.0056 (18)
N20.0309 (17)0.0316 (17)0.0483 (17)0.0033 (14)0.0055 (13)0.0014 (13)
C20.043 (3)0.056 (3)0.067 (3)0.019 (2)0.008 (2)0.016 (2)
Br20.0500 (3)0.0356 (2)0.0580 (2)0.00351 (19)0.01070 (18)0.00453 (16)
C30.036 (2)0.060 (3)0.067 (2)0.004 (2)0.0223 (19)0.018 (2)
C40.037 (2)0.036 (2)0.057 (2)0.0052 (17)0.0111 (18)0.0031 (17)
C50.0301 (19)0.0260 (18)0.0379 (17)0.0007 (16)0.0022 (14)0.0036 (14)
C60.045 (3)0.037 (2)0.052 (2)0.0067 (19)0.0020 (18)0.0054 (17)
C70.048 (3)0.052 (3)0.053 (2)0.015 (2)0.0113 (19)0.0052 (19)
C80.034 (2)0.065 (3)0.056 (2)0.005 (2)0.0157 (17)0.002 (2)
C90.038 (2)0.038 (2)0.060 (2)0.0053 (18)0.0112 (18)0.0026 (17)
C100.0304 (19)0.0319 (19)0.0349 (17)0.0001 (16)0.0033 (14)0.0023 (14)
Geometric parameters (Å, º) top
N1—C11.331 (4)C4—C51.369 (4)
N1—C51.351 (4)C4—H4A0.9300
N1—H1A0.8600C5—C101.464 (4)
C1—C21.363 (6)C6—C71.360 (5)
C1—H1B0.9300C6—H6A0.9300
N2—C61.326 (4)C7—C81.378 (5)
N2—C101.345 (4)C7—H7A0.9300
N2—H2A0.8600C8—C91.399 (5)
C2—C31.375 (5)C8—H8A0.9300
C2—H2B0.9300C9—C101.383 (5)
C3—C41.382 (5)C9—H9A0.9300
C3—H3A0.9300
C1—N1—C5123.5 (3)N1—C5—C4117.8 (3)
C1—N1—H1A118.3N1—C5—C10117.7 (3)
C5—N1—H1A118.3C4—C5—C10124.4 (3)
N1—C1—C2119.6 (4)N2—C6—C7119.7 (4)
N1—C1—H1B120.2N2—C6—H6A120.1
C2—C1—H1B120.2C7—C6—H6A120.1
C6—N2—C10124.6 (3)C6—C7—C8118.9 (4)
C6—N2—H2A117.7C6—C7—H7A120.6
C10—N2—H2A117.7C8—C7—H7A120.6
C1—C2—C3119.0 (4)C7—C8—C9120.3 (4)
C1—C2—H2B120.5C7—C8—H8A119.9
C3—C2—H2B120.5C9—C8—H8A119.9
C2—C3—C4119.9 (4)C10—C9—C8119.0 (3)
C2—C3—H3A120.0C10—C9—H9A120.5
C4—C3—H3A120.0C8—C9—H9A120.5
C5—C4—C3120.0 (3)N2—C10—C9117.6 (3)
C5—C4—H4A120.0N2—C10—C5117.5 (3)
C3—C4—H4A120.0C9—C10—C5125.0 (3)
C5—N1—C1—C20.2 (5)C6—C7—C8—C90.7 (5)
N1—C1—C2—C32.9 (6)C7—C8—C9—C101.6 (5)
C1—C2—C3—C43.3 (6)C6—N2—C10—C90.1 (5)
C2—C3—C4—C50.5 (5)C6—N2—C10—C5178.9 (3)
C1—N1—C5—C43.0 (5)C8—C9—C10—N21.2 (5)
C1—N1—C5—C10175.6 (3)C8—C9—C10—C5177.6 (3)
C3—C4—C5—N12.6 (5)N1—C5—C10—N2158.5 (3)
C3—C4—C5—C10175.9 (3)C4—C5—C10—N220.1 (5)
C10—N2—C6—C71.0 (5)N1—C5—C10—C920.3 (5)
N2—C6—C7—C80.6 (5)C4—C5—C10—C9161.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br20.862.373.178 (3)156
N2—H2A···Br1i0.862.353.145 (3)154
C1—H1B···Br10.932.833.611 (4)143
C9—H9A···Br20.932.813.675 (4)155
C6—H6A···Br2i0.932.843.619 (4)142
C4—H4A···Br1i0.932.863.697 (4)150
C3—H3A···Br1ii0.932.853.677 (4)149
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H10N22+·2Br
Mr318.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5568 (6), 9.7747 (7), 15.3533 (12)
β (°) 95.830 (7)
V3)1128.21 (15)
Z4
Radiation typeMo Kα
µ (mm1)7.15
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent Xcalibur EOS
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.287, 0.489
No. of measured, independent and
observed [I > 2σ(I)] reflections
5425, 3054, 1884
Rint0.032
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.073, 1.03
No. of reflections3054
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.57

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br20.862.373.178 (3)156
N2—H2A···Br1i0.862.353.145 (3)154
C1—H1B···Br10.932.833.611 (4)143
C9—H9A···Br20.932.813.675 (4)155
C6—H6A···Br2i0.932.843.619 (4)142
C4—H4A···Br1i0.932.863.697 (4)150
C3—H3A···Br1ii0.932.853.677 (4)149
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The structure was determined at the Hamdi Mango Center for Scientific Research at the University of Jordan, Amman, Jordan. RA-F would like to thank Al-Balqa'a Applied University (Jordan) for financial support (sabbatical leave).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o1903–o1904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEckensberger, U. D., Lerner, H.-W. & Bolte, M. (2008). Acta Cryst. E64, o1806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, G., Ilyukhin, A. & Glaser, J. (2000). Acta Cryst. C56, 1473–1475.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNakatsu, K., Yoshioka, H., Matsui, M., Koda, S. & Ooi, S. (1972). Acta Cryst. A28, S24.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds