organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Phenyl­carbamo­yl)amino]­butyl N-phenyl­carbamate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dSchool Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 September 2012; accepted 5 September 2012; online 8 September 2012)

In the title compound, C18H21N3O3, the terminal phenyl rings make a dihedral angle of 86.3 (5)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along [001], forming parallel C(4) and R12(6) graph-set motifs.

Related literature

For pharmaceutical properties of carbamates and carbamide compounds, see: Li et al. (2009[Li, H. Q., Lv, P. C., Yan, T. & Zhu, H. L. (2009). Anti-Cancer Agent. Med. Chem. 9, 471-480.]); Gisbert & Pajares (2004[Gisbert, J. P. & Pajares, J. M. (2004). Aliment. Pharmacol. Ther. 20, 1001-1017.]); Metcalf (2002[Metcalf, R. L. (2002). Insect Control, in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim.]); Ray & Chaturvedi (2004[Ray, S. & Chaturvedi, D. (2004). Drugs Fut. 29, 343-357.]). For a related structure, see: Ghalib et al. (2010[Ghalib, R. M., Sulaiman, O., Mehdi, S. H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o2406-o2407.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O3

  • Mr = 327.38

  • Monoclinic, C c

  • a = 10.722 (5) Å

  • b = 22.297 (3) Å

  • c = 9.109 (3) Å

  • β = 123.570 (6)°

  • V = 1814.5 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.14 × 0.12 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer

  • 2915 measured reflections

  • 1676 independent reflections

  • 1264 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.155

  • S = 1.05

  • 1676 reflections

  • 231 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (4) 1.97 (4) 2.831 (7) 175 (4)
N2—H2N⋯O3ii 0.86 (4) 2.18 (4) 2.920 (6) 145 (4)
N3—H3N⋯O3ii 0.86 (6) 2.04 (6) 2.822 (8) 152 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Carbamides and carbamates are great classes of organic compounds due to their incorporations in many of bioactive structures. Carbamides, such as N-phenyl-N'-(2-chloroethyl)ureas (CEUs) and benzoylureas (BUs) show good anticancer activity, and these compounds have mainly been proved to be tubulin ligands that inhibit the polymerization of tubulin (Li et al., 2009; Gisbert et al., 2004). Carbamates such as aldicarb, carbofuran (Furadan), carbaryl (Sevin), ethienocarb, and fenobucarb are widely used as active pesticides (Metcalf, 2002). Carbamates used also in drug design of anticancer drugs (Ray & Chaturvedi, 2004) and in polymer industry such as polyureathanes. In view of such important applications, we herein report the synthesis and crystal structure of the title compound (I) having both functions of carbamide and carbamate groups.

In (I), (Fig. 1), the orientation of the C1–C6 phenyl ring with respect to the other C13–C18 phenyl ring of the molecule is almost normal by a dihedral angle of 86.3 (5)°. The N1–C7–O2–C8, O2–C8–C9–N2, C9–N2–C12–N3 and C8–C9–C10–C11 torsion angles are 179.8 (5), 169.9 (4), -177.1 (6) and -63.7 (8)°, respectively. The values of the bond lengths and bond angles are consistent with a related structure (Ghalib et al., 2010).

In the crystal, adjacent molecules are interconnected by N—H···O hydrogen bonds (Table 1) into a chain-like structure along the c axis generating parallel C(4) and R21(6) ring motifs (Fig. 2; Bernstein et al., 1995).

Related literature top

For pharmaceutical properties of carbamates and carbamide compounds, see: Li et al. (2009); Gisbert & Pajares (2004); Metcalf (2002); Ray & Chaturvedi (2004). For a related structure, see: Ghalib et al. (2010). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was obtained as a biproduct from a reaction mixture of 89 mg (1 mmol) 2-aminobutan-1-ol, 119 mg (1 mmol) phenylisocyanate and 93 mg (1 mmol) chloroacetone in 50 ml e thanol in presence of few drops of TEA. The reaction mixture was refluxed for 4 h then left to cool at ambient temperature. The solid that formed was decanted washed by ethanol and dried by filteration then recrystallized from acetone. M,p. 427 K. Colourless crystals suitable for X-ray diffraction were grown from acetone solution of (1) over 3 days at room temperature. M.p. 469 K; 91% yield. IR: spectrum, cm-1: 1593 (C=C), 1635 (C=O urea), 1704 (C=O carbamate), 2936–2969 (CH-aliphatic), 3088 (CH-aromatic). 1H-NMR, p.p.m., (DMSO); 0.93 t (3H, CH2—CH3), 1.5 m (2H, CH—CH2—CH3), 3.8 m (1H, CH2—CH—CH2), 4.0 d (2H, O—CH2—CH), 6.1 s (CH—NH—CO), 6.9–7.4 (m, 10H, Ar), 8.4 s (NH—CO—NH—Ph), 9.6 s (O—CO—NH—Ph). 13C-NMR spectrum, d, p.p.m. (DMSO-d): 10.2 (CH3, CH3CH2), 24 (CH2, CH3CH2), 50.2 (CH, CH2—CH—CH2), 66.2 (CH2, O—CH2—CH), 117–128 (10 CH, Ar), 153, 140 (2 C, Ar), 153 (HNCONH, urea), 172 (carbamte).

Refinement top

Carbon-bound H-atoms were placed geometrically (C—H = 0.93 to 0.98 Å) and were refined using a riding model with Uiso=1.2 or 1.5Ueq(C). The N-bound H atom was located from a difference map and refined freely with the distance restraint N—H = 0.86 ± 0.02 Å. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined so the Friedel pairs were merged and any references to the Flack parameter [-0.3 (5)] were removed.

Structure description top

Carbamides and carbamates are great classes of organic compounds due to their incorporations in many of bioactive structures. Carbamides, such as N-phenyl-N'-(2-chloroethyl)ureas (CEUs) and benzoylureas (BUs) show good anticancer activity, and these compounds have mainly been proved to be tubulin ligands that inhibit the polymerization of tubulin (Li et al., 2009; Gisbert et al., 2004). Carbamates such as aldicarb, carbofuran (Furadan), carbaryl (Sevin), ethienocarb, and fenobucarb are widely used as active pesticides (Metcalf, 2002). Carbamates used also in drug design of anticancer drugs (Ray & Chaturvedi, 2004) and in polymer industry such as polyureathanes. In view of such important applications, we herein report the synthesis and crystal structure of the title compound (I) having both functions of carbamide and carbamate groups.

In (I), (Fig. 1), the orientation of the C1–C6 phenyl ring with respect to the other C13–C18 phenyl ring of the molecule is almost normal by a dihedral angle of 86.3 (5)°. The N1–C7–O2–C8, O2–C8–C9–N2, C9–N2–C12–N3 and C8–C9–C10–C11 torsion angles are 179.8 (5), 169.9 (4), -177.1 (6) and -63.7 (8)°, respectively. The values of the bond lengths and bond angles are consistent with a related structure (Ghalib et al., 2010).

In the crystal, adjacent molecules are interconnected by N—H···O hydrogen bonds (Table 1) into a chain-like structure along the c axis generating parallel C(4) and R21(6) ring motifs (Fig. 2; Bernstein et al., 1995).

For pharmaceutical properties of carbamates and carbamide compounds, see: Li et al. (2009); Gisbert & Pajares (2004); Metcalf (2002); Ray & Chaturvedi (2004). For a related structure, see: Ghalib et al. (2010). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing and hydrogen bonding of (I) down the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-[(Phenylcarbamoyl)amino]butyl N-phenylcarbamate top
Crystal data top
C18H21N3O3F(000) = 696
Mr = 327.38Dx = 1.198 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
Hall symbol: C -2ycCell parameters from 838 reflections
a = 10.722 (5) Åθ = 4.0–72.5°
b = 22.297 (3) ŵ = 0.68 mm1
c = 9.109 (3) ÅT = 293 K
β = 123.570 (6)°Plate, colourless
V = 1814.5 (11) Å30.14 × 0.12 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini)
diffractometer
1264 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.024
Graphite monochromatorθmax = 72.7°, θmin = 4.0°
Detector resolution: 16.3280 pixels mm-1h = 1013
ω scansk = 2627
2915 measured reflectionsl = 118
1676 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0822P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1676 reflectionsΔρmax = 0.22 e Å3
231 parametersΔρmin = 0.22 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (5)
Crystal data top
C18H21N3O3V = 1814.5 (11) Å3
Mr = 327.38Z = 4
Monoclinic, CcCu Kα radiation
a = 10.722 (5) ŵ = 0.68 mm1
b = 22.297 (3) ÅT = 293 K
c = 9.109 (3) Å0.14 × 0.12 × 0.07 mm
β = 123.570 (6)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini)
diffractometer
1264 reflections with I > 2σ(I)
2915 measured reflectionsRint = 0.024
1676 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0525 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
1676 reflectionsΔρmin = 0.22 e Å3
231 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2114 (5)0.75128 (17)0.7981 (6)0.1177 (16)
O20.0009 (4)0.69881 (13)0.6486 (4)0.0788 (10)
O30.0605 (5)0.51102 (14)0.6398 (5)0.0941 (16)
N10.0064 (5)0.78786 (17)0.5510 (5)0.0734 (14)
N20.0156 (6)0.55146 (15)0.8323 (5)0.0847 (18)
N30.1249 (6)0.45933 (16)0.8872 (6)0.0886 (18)
C10.0557 (6)0.84566 (19)0.5415 (6)0.0722 (16)
C20.0217 (7)0.8733 (2)0.3778 (8)0.092 (2)
C30.0180 (10)0.9309 (3)0.3609 (11)0.124 (3)
C40.1309 (10)0.9615 (3)0.5060 (12)0.123 (3)
C50.2039 (8)0.9341 (3)0.6652 (11)0.110 (3)
C60.1700 (7)0.8764 (2)0.6871 (8)0.088 (2)
C70.0846 (6)0.74643 (18)0.6781 (6)0.0704 (16)
C80.0670 (7)0.6502 (2)0.7745 (7)0.0822 (18)
C90.0553 (6)0.60516 (19)0.7281 (6)0.0797 (18)
C100.1753 (9)0.6283 (3)0.7544 (10)0.111 (3)
C110.1308 (16)0.6430 (4)0.9279 (16)0.182 (6)
C120.0681 (6)0.50769 (18)0.7795 (6)0.0771 (18)
C130.1897 (7)0.4088 (2)0.8611 (7)0.088 (2)
C140.1571 (11)0.3526 (2)0.8931 (10)0.120 (3)
C150.2259 (17)0.3026 (3)0.8774 (17)0.180 (6)
C160.3162 (16)0.3086 (4)0.8189 (17)0.184 (7)
C170.3521 (12)0.3633 (3)0.7913 (13)0.151 (5)
C180.2891 (9)0.4141 (3)0.8129 (10)0.111 (3)
H1N0.085 (3)0.778 (2)0.472 (5)0.087 (17)*
H20.099500.853400.280100.1110*
H2N0.020 (5)0.549 (2)0.929 (4)0.072 (13)*
H30.032000.949100.250700.1480*
H3N0.092 (6)0.456 (2)0.954 (6)0.087 (15)*
H40.156401.000200.494600.1470*
H50.279400.954800.763000.1320*
H60.222800.858300.797600.1050*
H8A0.110300.665200.893200.0990*
H8B0.145700.631600.768100.0990*
H90.104000.594500.603600.0950*
H10A0.219600.663800.682000.1330*
H10B0.253400.598200.709800.1330*
H11A0.208800.665400.924300.2720*
H11B0.041000.666600.983100.2720*
H11C0.112300.606800.994100.2720*
H140.088900.348100.925100.1440*
H150.209500.264900.907500.2150*
H160.354100.274600.797400.2200*
H170.419300.367200.757600.1800*
H180.314800.451900.794400.1320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.073 (3)0.078 (2)0.119 (3)0.0025 (17)0.001 (3)0.014 (2)
O20.086 (2)0.0655 (16)0.0737 (18)0.0028 (14)0.0372 (17)0.0139 (14)
O30.176 (4)0.0685 (17)0.094 (2)0.005 (2)0.110 (3)0.0044 (16)
N10.077 (3)0.0649 (19)0.074 (2)0.0062 (17)0.039 (2)0.0022 (17)
N20.159 (4)0.0572 (18)0.085 (3)0.016 (2)0.097 (3)0.0076 (18)
N30.161 (4)0.0644 (19)0.095 (3)0.021 (2)0.105 (3)0.0121 (18)
C10.089 (3)0.060 (2)0.085 (3)0.001 (2)0.059 (3)0.006 (2)
C20.110 (4)0.074 (3)0.099 (4)0.002 (3)0.062 (3)0.014 (3)
C30.177 (7)0.081 (3)0.127 (5)0.003 (4)0.092 (6)0.027 (4)
C40.161 (7)0.070 (3)0.159 (7)0.015 (4)0.102 (6)0.009 (4)
C50.131 (5)0.071 (3)0.141 (6)0.023 (3)0.083 (5)0.016 (4)
C60.101 (4)0.072 (3)0.097 (4)0.016 (3)0.059 (3)0.010 (3)
C70.081 (3)0.052 (2)0.076 (3)0.0030 (19)0.042 (3)0.0076 (18)
C80.109 (4)0.062 (2)0.081 (3)0.010 (2)0.056 (3)0.016 (2)
C90.124 (4)0.057 (2)0.081 (3)0.007 (2)0.071 (3)0.0054 (19)
C100.150 (6)0.079 (3)0.145 (6)0.008 (4)0.108 (5)0.010 (3)
C110.284 (13)0.146 (8)0.215 (10)0.065 (8)0.201 (11)0.031 (7)
C120.135 (4)0.053 (2)0.086 (3)0.003 (2)0.088 (3)0.0014 (19)
C130.144 (5)0.066 (2)0.096 (3)0.019 (3)0.092 (4)0.006 (2)
C140.218 (8)0.068 (3)0.147 (5)0.020 (4)0.146 (6)0.015 (3)
C150.345 (14)0.071 (4)0.246 (11)0.052 (6)0.241 (12)0.034 (5)
C160.322 (15)0.093 (5)0.268 (13)0.075 (7)0.246 (13)0.041 (6)
C170.228 (10)0.113 (5)0.204 (9)0.051 (6)0.178 (9)0.020 (5)
C180.165 (6)0.085 (3)0.141 (5)0.015 (4)0.122 (5)0.002 (3)
Geometric parameters (Å, º) top
O1—C71.188 (8)C13—C141.375 (8)
O2—C71.330 (6)C14—C151.387 (16)
O2—C81.448 (6)C15—C161.35 (3)
O3—C121.232 (7)C16—C171.344 (14)
N1—C11.414 (6)C17—C181.387 (13)
N1—C71.350 (6)C2—H20.9300
N2—C91.454 (6)C3—H30.9300
N2—C121.342 (7)C4—H40.9300
N3—C121.355 (6)C5—H50.9300
N3—C131.411 (8)C6—H60.9300
N1—H1N0.86 (4)C8—H8A0.9700
N2—H2N0.86 (4)C8—H8B0.9700
N3—H3N0.86 (6)C9—H90.9800
C1—C61.390 (8)C10—H10A0.9700
C1—C21.387 (7)C10—H10B0.9700
C2—C31.388 (9)C11—H11A0.9600
C3—C41.381 (12)C11—H11B0.9600
C4—C51.354 (12)C11—H11C0.9600
C5—C61.381 (9)C14—H140.9300
C8—C91.515 (9)C15—H150.9300
C9—C101.523 (12)C16—H160.9300
C10—C111.414 (15)C17—H170.9300
C13—C181.364 (13)C18—H180.9300
C7—O2—C8116.7 (4)C3—C2—H2120.00
C1—N1—C7126.9 (5)C2—C3—H3120.00
C9—N2—C12122.5 (4)C4—C3—H3120.00
C12—N3—C13125.4 (5)C3—C4—H4121.00
C7—N1—H1N115 (3)C5—C4—H4121.00
C1—N1—H1N118 (3)C4—C5—H5119.00
C9—N2—H2N116 (3)C6—C5—H5119.00
C12—N2—H2N122 (3)C1—C6—H6120.00
C13—N3—H3N119 (3)C5—C6—H6121.00
C12—N3—H3N113 (3)O2—C8—H8A110.00
N1—C1—C6123.6 (4)O2—C8—H8B110.00
C2—C1—C6119.6 (5)C9—C8—H8A110.00
N1—C1—C2116.7 (5)C9—C8—H8B110.00
C1—C2—C3119.5 (6)H8A—C8—H8B109.00
C2—C3—C4120.7 (7)N2—C9—H9108.00
C3—C4—C5118.9 (7)C8—C9—H9108.00
C4—C5—C6122.2 (7)C10—C9—H9108.00
C1—C6—C5119.0 (6)C9—C10—H10A108.00
O2—C7—N1110.0 (5)C9—C10—H10B108.00
O1—C7—O2124.7 (4)C11—C10—H10A108.00
O1—C7—N1125.4 (5)C11—C10—H10B108.00
O2—C8—C9107.3 (5)H10A—C10—H10B107.00
N2—C9—C10111.0 (5)C10—C11—H11A109.00
C8—C9—C10114.1 (5)C10—C11—H11B109.00
N2—C9—C8107.7 (5)C10—C11—H11C109.00
C9—C10—C11117.5 (10)H11A—C11—H11B110.00
N2—C12—N3115.4 (5)H11A—C11—H11C109.00
O3—C12—N3122.9 (5)H11B—C11—H11C109.00
O3—C12—N2121.7 (4)C13—C14—H14120.00
N3—C13—C14119.0 (8)C15—C14—H14120.00
N3—C13—C18122.0 (5)C14—C15—H15120.00
C14—C13—C18118.9 (7)C16—C15—H15120.00
C13—C14—C15119.9 (12)C15—C16—H16120.00
C14—C15—C16120.1 (9)C17—C16—H16120.00
C15—C16—C17120.5 (12)C16—C17—H17120.00
C16—C17—C18120.1 (13)C18—C17—H17120.00
C13—C18—C17120.2 (8)C13—C18—H18120.00
C1—C2—H2120.00C17—C18—H18120.00
C7—O2—C8—C9172.8 (5)C6—C1—C2—C31.3 (12)
C8—O2—C7—N1179.8 (5)C1—C2—C3—C41.7 (15)
C8—O2—C7—O10.8 (9)C2—C3—C4—C50.9 (17)
C1—N1—C7—O14.2 (10)C3—C4—C5—C60.5 (16)
C7—N1—C1—C622.7 (10)C4—C5—C6—C11.0 (14)
C1—N1—C7—O2176.3 (5)O2—C8—C9—C1066.4 (6)
C7—N1—C1—C2160.8 (6)O2—C8—C9—N2169.9 (4)
C12—N2—C9—C886.4 (6)C8—C9—C10—C1163.7 (8)
C9—N2—C12—N3177.1 (6)N2—C9—C10—C1158.2 (8)
C12—N2—C9—C10148.1 (6)N3—C13—C14—C15176.5 (8)
C9—N2—C12—O30.9 (10)C18—C13—C14—C150.5 (12)
C13—N3—C12—N2178.2 (6)N3—C13—C18—C17179.0 (7)
C13—N3—C12—O33.9 (10)C14—C13—C18—C172.1 (11)
C12—N3—C13—C1844.7 (10)C13—C14—C15—C164.7 (17)
C12—N3—C13—C14138.4 (7)C14—C15—C16—C176 (2)
N1—C1—C6—C5176.3 (7)C15—C16—C17—C183.9 (19)
C2—C1—C6—C50.1 (12)C16—C17—C18—C130.4 (14)
N1—C1—C2—C3177.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (4)1.97 (4)2.831 (7)175 (4)
N2—H2N···O3ii0.86 (4)2.18 (4)2.920 (6)145 (4)
N3—H3N···O3ii0.86 (6)2.04 (6)2.822 (8)152 (4)
C6—H6···O10.932.392.917 (6)116
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H21N3O3
Mr327.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)10.722 (5), 22.297 (3), 9.109 (3)
β (°) 123.570 (6)
V3)1814.5 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.14 × 0.12 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire3, Gemini)
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2915, 1676, 1264
Rint0.024
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 1.05
No. of reflections1676
No. of parameters231
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (4)1.97 (4)2.831 (7)175 (4)
N2—H2N···O3ii0.86 (4)2.18 (4)2.920 (6)145 (4)
N3—H3N···O3ii0.86 (6)2.04 (6)2.822 (8)152 (4)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

GAB thanks the Ministry of Education and Science of the Republic of Serbia for financial support (projects 172014 and 172035. The authors also thank Manchester Metropolitan University and Erciyes University for facilitating this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhalib, R. M., Sulaiman, O., Mehdi, S. H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o2406–o2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGisbert, J. P. & Pajares, J. M. (2004). Aliment. Pharmacol. Ther. 20, 1001–1017.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H. Q., Lv, P. C., Yan, T. & Zhu, H. L. (2009). Anti-Cancer Agent. Med. Chem. 9, 471–480.  CrossRef CAS Google Scholar
First citationMetcalf, R. L. (2002). Insect Control, in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRay, S. & Chaturvedi, D. (2004). Drugs Fut. 29, 343–357.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds