organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Hy­dr­oxy-2,2,8,8-tetra­methyl-2H,8H-pyrano[2,3-f]chromen-6-yl)ethanone

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: Koorbanally@ukzn.ac.za

(Received 17 September 2012; accepted 25 September 2012; online 29 September 2012)

In the title compound, C18H20O4,the pyran ring of the chromene unit adopts a half-chair conformation. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked along the b axis by C—H⋯O hydrogen bonds.

Related literature

The title compound is a precursor in the synthesis of biologically active prenylated chalcones, see: Adler & Baldwin (2009[Adler, M. J. & Baldwin, S. W. (2009). Tetrahedron Lett. 50, 5075-5079.]); Lee & Li (2007[Lee, Y. R. & Li, X. (2007). Bull. Korean Chem. Soc. 28, 1739-1745.]); For related structures, see: Lee & Xia (2007[Lee, Y. R. & Xia, L. (2007). Bull. Korean Chem. Soc. 28, 1579-1584.]); Mondal et al. (2007[Mondal, M., Puranik, V. G. & Argade, N. P. (2007). J. Org. Chem. 72, 2068-2076.]); Narender et al. (2005[Narender, T., Khaliq, T., Shweta, Nishi, Goyal, N. & Guptab, S. (2005). Bioorg. Med. Chem. 13, 6543-6550.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O4

  • Mr = 300.34

  • Triclinic, [P \overline 1]

  • a = 8.5039 (6) Å

  • b = 9.5370 (6) Å

  • c = 10.7859 (7) Å

  • α = 102.180 (3)°

  • β = 102.621 (3)°

  • γ = 110.671 (3)°

  • V = 757.86 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 446 K

  • 0.39 × 0.21 × 0.2 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.982

  • 17650 measured reflections

  • 3770 independent reflections

  • 3284 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.119

  • S = 1.06

  • 3770 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.76 2.4897 (11) 148
C11—H11A⋯O2i 0.96 2.48 3.3829 (14) 156
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound (I), a pyranochromene acetophenone, was obtained as an intermediate in the synthesis of biologically active chalcones and flavanones (Adler & Baldwin, 2009; Lee & Li 2007; Lee & Xia, 2007). The pyranochromene skeleton is a core structure in various naturally active compounds (Adler and Baldwin 2009, Narender et al. 2005, Mondal et al. 2007). The efficient and concise synthesis of pyranochalcones was achieved from readily available 2,4,6-trihydroxyacetophenone. The key step in the synthetic strategy was a base catalyzed benzopyran formation. The crystal structure of the title compound (Fig. 1) has not been previously reported. One of the pyran rings of the chromene unit forms a half chair conformation [Q = 0.3846 (10) Å, θ = 112.81 (16)° and ψ = 142.65 (17) °]. The maximum displacement from the C1O1C13C14 plane are 0.684 Å for O16 and 0.275 Å for C15. In the crystal structure of the title compound, molecules are linked together by a C—H···O hydrogen bond along the crystallographic b axis (Table 1).

Related literature top

The title compound is a precursor in the synthesis of biologically active prenylated chalcones, see: Adler & Baldwin (2009); Lee & Li (2007); For related structures, see: Lee & Xia (2007); Mondal et al. (2007); Narender et al. (2005).

Experimental top

To a one necked round bottom flask, 2,4,6-trihydroxyacetophenone (2.0 g, 0.0119 mol) and 2,3-dimethylbutenal (4.0 g, 0.0476 mol) was added. This was followed by the addition of pyridine (1.35 g) and the reaction mixture stirred for 24 h at 110°C. The reaction was monitored by TLC using EtOAc: Hexane (5:95, Rf = 0.6). After completion of the reaction, hydrochloric acid (30 ml) was added to neutralize the reaction and the mixture extracted with ethyl acetate (4 x 40 ml). The combined organic layer was dried over MgSO4 and the solvent evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using 100% hexane as the eluent to afford the pyranochromene as a yellow crystalline solid (2.58 g, yield 72.82%) with a melting point of 89–90 °C.

Recrystallization from hexane at room temperature afforded yellow crystals suitable for X-ray analysis.

1H NMR (400 MHz, CDCl3): δ (p.p.m.): 13.99 (1H, s, OH), 6.65 (1H, d, J = 10.08 Hz), 6.58 (1H, d, J = 10.08 Hz), 5.45 (1H, d, J = 10.08 Hz), 5.43 (1H, d, J = 10.08 Hz), 2.65 (3H, s), 1.49 (6H, s), 1.43 (6H, s).

13C NMR (100 MHz, CDCl3): δ (p.p.m.): 203.2, 160.5, 156.6, 154.9, 125.3, 124.6, 116.4, 116.1, 105.7, 102.2, 102.1, 78.2, 78.1, 33.1, 28.5, 28.2.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.96 Å for Me H atoms and 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. The O—H H-atom was located in a difference map and also placed in a calculated position O—H = 0.82 Å (Uiso(H) = 1.2Ueq(O).

Structure description top

The title compound (I), a pyranochromene acetophenone, was obtained as an intermediate in the synthesis of biologically active chalcones and flavanones (Adler & Baldwin, 2009; Lee & Li 2007; Lee & Xia, 2007). The pyranochromene skeleton is a core structure in various naturally active compounds (Adler and Baldwin 2009, Narender et al. 2005, Mondal et al. 2007). The efficient and concise synthesis of pyranochalcones was achieved from readily available 2,4,6-trihydroxyacetophenone. The key step in the synthetic strategy was a base catalyzed benzopyran formation. The crystal structure of the title compound (Fig. 1) has not been previously reported. One of the pyran rings of the chromene unit forms a half chair conformation [Q = 0.3846 (10) Å, θ = 112.81 (16)° and ψ = 142.65 (17) °]. The maximum displacement from the C1O1C13C14 plane are 0.684 Å for O16 and 0.275 Å for C15. In the crystal structure of the title compound, molecules are linked together by a C—H···O hydrogen bond along the crystallographic b axis (Table 1).

The title compound is a precursor in the synthesis of biologically active prenylated chalcones, see: Adler & Baldwin (2009); Lee & Li (2007); For related structures, see: Lee & Xia (2007); Mondal et al. (2007); Narender et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP diagram showing the molecular structure of the titled compound with atomic labelling scheme. Non-H atoms are drawn with 50% probability displacement ellipsoids and H atoms are shown as open circles.
1-(5-Hydroxy-2,2,8,8-tetramethyl-2H,8H-pyrano[2,3-f] chromen-6-yl)ethanone top
Crystal data top
C18H20O4Z = 2
Mr = 300.34F(000) = 320
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5039 (6) ÅCell parameters from 17650 reflections
b = 9.5370 (6) Åθ = 2.0–28.5°
c = 10.7859 (7) ŵ = 0.09 mm1
α = 102.180 (3)°T = 446 K
β = 102.621 (3)°Block, yellow
γ = 110.671 (3)°0.39 × 0.21 × 0.2 mm
V = 757.86 (9) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1110
Tmin = 0.965, Tmax = 0.982k = 1212
17650 measured reflectionsl = 1414
3770 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.1777P]
where P = (Fo2 + 2Fc2)/3
3770 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H20O4γ = 110.671 (3)°
Mr = 300.34V = 757.86 (9) Å3
Triclinic, P1Z = 2
a = 8.5039 (6) ÅMo Kα radiation
b = 9.5370 (6) ŵ = 0.09 mm1
c = 10.7859 (7) ÅT = 446 K
α = 102.180 (3)°0.39 × 0.21 × 0.2 mm
β = 102.621 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3770 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3284 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.018
17650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
3770 reflectionsΔρmin = 0.27 e Å3
205 parameters
Special details top

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.96 Å for Me H atoms and 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. The O—H H-atom was located in a difference map and also placed in a calculated position O—H = 0.82 Å (Uiso(H) = 1.2Ueq(O).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following Model ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 5 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 62 154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 300 Deg. Noted:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19888 (12)0.60398 (11)0.46668 (9)0.01525 (19)
C20.20857 (12)0.45580 (11)0.43556 (9)0.0169 (2)
C30.12126 (13)0.33380 (11)0.30439 (10)0.0199 (2)
C40.01442 (14)0.35565 (13)0.18500 (10)0.0252 (2)
H4A0.02050.26690.10720.038*
H4B0.0850.45060.17050.038*
H4C0.08940.36330.2010.038*
C50.31333 (13)0.42621 (11)0.54112 (10)0.0170 (2)
C60.40358 (12)0.53801 (11)0.66846 (9)0.01595 (19)
C70.51498 (13)0.51113 (11)0.77598 (10)0.0190 (2)
H70.53140.41840.76010.023*
C80.59305 (13)0.61881 (12)0.89653 (10)0.0205 (2)
H80.66530.59950.96270.025*
C90.57082 (13)0.77035 (12)0.93170 (9)0.0183 (2)
C100.47362 (16)0.77313 (14)1.03468 (11)0.0279 (2)
H10A0.46010.87031.05530.042*
H10B0.54080.7651.11470.042*
H10C0.35880.68580.99890.042*
C110.74885 (14)0.91349 (12)0.98215 (11)0.0250 (2)
H11A0.80520.91280.91410.037*
H11B0.82320.90961.06120.037*
H11C0.73041.00831.0030.037*
C120.38550 (12)0.68003 (11)0.69361 (9)0.01523 (19)
C130.28325 (12)0.71568 (11)0.59435 (9)0.01472 (19)
C140.25158 (12)0.85820 (11)0.61994 (9)0.01643 (19)
H140.28170.92150.70740.02*
C150.17926 (12)0.89745 (11)0.51758 (9)0.0176 (2)
H150.15250.98480.53330.021*
C160.14111 (12)0.79960 (11)0.37625 (9)0.0174 (2)
C170.30306 (14)0.85631 (13)0.32954 (10)0.0240 (2)
H17A0.40060.84840.38750.036*
H17B0.33480.96430.33220.036*
H17C0.27550.79190.23960.036*
C180.02224 (13)0.79449 (13)0.27938 (10)0.0229 (2)
H18A0.04640.72540.1920.034*
H18B0.0010.89880.27490.034*
H18C0.12220.7560.31010.034*
O10.09524 (9)0.63381 (8)0.36994 (7)0.01782 (16)
O20.13363 (11)0.20500 (9)0.28795 (8)0.02575 (18)
O30.33104 (10)0.28943 (8)0.52254 (7)0.02275 (18)
H30.27480.23240.44510.034*
O40.46499 (10)0.79211 (8)0.81538 (7)0.02102 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (4)0.0163 (4)0.0162 (4)0.0051 (3)0.0054 (3)0.0060 (3)
C20.0165 (4)0.0147 (4)0.0177 (4)0.0042 (3)0.0069 (3)0.0039 (3)
C30.0171 (4)0.0171 (4)0.0214 (5)0.0026 (4)0.0089 (4)0.0031 (4)
C40.0213 (5)0.0244 (5)0.0200 (5)0.0060 (4)0.0026 (4)0.0015 (4)
C50.0182 (4)0.0140 (4)0.0212 (5)0.0065 (3)0.0100 (4)0.0069 (3)
C60.0156 (4)0.0153 (4)0.0189 (4)0.0066 (3)0.0072 (3)0.0074 (4)
C70.0198 (4)0.0179 (4)0.0248 (5)0.0106 (4)0.0088 (4)0.0110 (4)
C80.0203 (5)0.0228 (5)0.0225 (5)0.0120 (4)0.0054 (4)0.0111 (4)
C90.0197 (4)0.0209 (5)0.0152 (4)0.0104 (4)0.0029 (3)0.0072 (3)
C100.0350 (6)0.0347 (6)0.0284 (5)0.0224 (5)0.0167 (5)0.0173 (5)
C110.0208 (5)0.0225 (5)0.0265 (5)0.0087 (4)0.0005 (4)0.0058 (4)
C120.0139 (4)0.0146 (4)0.0164 (4)0.0051 (3)0.0050 (3)0.0048 (3)
C130.0142 (4)0.0148 (4)0.0158 (4)0.0061 (3)0.0053 (3)0.0054 (3)
C140.0160 (4)0.0161 (4)0.0162 (4)0.0069 (3)0.0045 (3)0.0035 (3)
C150.0172 (4)0.0164 (4)0.0199 (4)0.0081 (3)0.0057 (3)0.0058 (3)
C160.0182 (4)0.0168 (4)0.0175 (4)0.0072 (3)0.0050 (3)0.0071 (3)
C170.0223 (5)0.0264 (5)0.0240 (5)0.0078 (4)0.0108 (4)0.0103 (4)
C180.0218 (5)0.0255 (5)0.0201 (5)0.0098 (4)0.0023 (4)0.0094 (4)
O10.0179 (3)0.0168 (3)0.0161 (3)0.0064 (3)0.0022 (3)0.0048 (3)
O20.0313 (4)0.0160 (3)0.0258 (4)0.0065 (3)0.0112 (3)0.0023 (3)
O30.0300 (4)0.0151 (3)0.0251 (4)0.0111 (3)0.0101 (3)0.0059 (3)
O40.0261 (4)0.0184 (3)0.0152 (3)0.0121 (3)0.0017 (3)0.0023 (3)
Geometric parameters (Å, º) top
C1—O11.3590 (11)C10—H10B0.96
C1—C131.3984 (13)C10—H10C0.96
C1—C21.4180 (13)C11—H11A0.96
C2—C51.4281 (13)C11—H11B0.96
C2—C31.4640 (13)C11—H11C0.96
C3—O21.2485 (12)C12—O41.3543 (11)
C3—C41.5042 (14)C12—C131.4048 (12)
C4—H4A0.96C13—C141.4590 (12)
C4—H4B0.96C14—C151.3332 (13)
C4—H4C0.96C14—H140.93
C5—O31.3439 (11)C15—C161.5065 (13)
C5—C61.3986 (13)C15—H150.93
C6—C121.3935 (12)C16—O11.4711 (11)
C6—C71.4577 (13)C16—C181.5232 (13)
C7—C81.3282 (14)C16—C171.5281 (13)
C7—H70.93C17—H17A0.96
C8—C91.5038 (13)C17—H17B0.96
C8—H80.93C17—H17C0.96
C9—O41.4749 (11)C18—H18A0.96
C9—C111.5228 (14)C18—H18B0.96
C9—C101.5238 (14)C18—H18C0.96
C10—H10A0.96O3—H30.82
O1—C1—C13119.17 (8)C9—C11—H11A109.5
O1—C1—C2118.15 (8)C9—C11—H11B109.5
C13—C1—C2122.58 (8)H11A—C11—H11B109.5
C1—C2—C5116.61 (8)C9—C11—H11C109.5
C1—C2—C3124.92 (9)H11A—C11—H11C109.5
C5—C2—C3118.47 (9)H11B—C11—H11C109.5
O2—C3—C2120.10 (9)O4—C12—C6122.09 (8)
O2—C3—C4117.13 (9)O4—C12—C13115.82 (8)
C2—C3—C4122.76 (9)C6—C12—C13122.09 (8)
C3—C4—H4A109.5C1—C13—C12118.05 (8)
C3—C4—H4B109.5C1—C13—C14118.47 (8)
H4A—C4—H4B109.5C12—C13—C14123.36 (8)
C3—C4—H4C109.5C15—C14—C13119.82 (8)
H4A—C4—H4C109.5C15—C14—H14120.1
H4B—C4—H4C109.5C13—C14—H14120.1
O3—C5—C6116.62 (9)C14—C15—C16119.64 (8)
O3—C5—C2121.48 (9)C14—C15—H15120.2
C6—C5—C2121.89 (9)C16—C15—H15120.2
C12—C6—C5118.72 (8)O1—C16—C15109.49 (7)
C12—C6—C7118.82 (8)O1—C16—C18104.23 (7)
C5—C6—C7122.46 (9)C15—C16—C18112.21 (8)
C8—C7—C6120.13 (9)O1—C16—C17108.08 (8)
C8—C7—H7119.9C15—C16—C17111.13 (8)
C6—C7—H7119.9C18—C16—C17111.38 (8)
C7—C8—C9123.48 (9)C16—C17—H17A109.5
C7—C8—H8118.3C16—C17—H17B109.5
C9—C8—H8118.3H17A—C17—H17B109.5
O4—C9—C8112.70 (8)C16—C17—H17C109.5
O4—C9—C11104.96 (8)H17A—C17—H17C109.5
C8—C9—C11111.35 (8)H17B—C17—H17C109.5
O4—C9—C10106.15 (8)C16—C18—H18A109.5
C8—C9—C10110.78 (8)C16—C18—H18B109.5
C11—C9—C10110.66 (9)H18A—C18—H18B109.5
C9—C10—H10A109.5C16—C18—H18C109.5
C9—C10—H10B109.5H18A—C18—H18C109.5
H10A—C10—H10B109.5H18B—C18—H18C109.5
C9—C10—H10C109.5C1—O1—C16117.84 (7)
H10A—C10—H10C109.5C5—O3—H3109.5
H10B—C10—H10C109.5C12—O4—C9122.57 (7)
O1—C1—C2—C5177.70 (8)C7—C6—C12—C13178.75 (8)
C13—C1—C2—C51.41 (14)O1—C1—C13—C12178.20 (8)
O1—C1—C2—C32.90 (14)C2—C1—C13—C121.95 (14)
C13—C1—C2—C3179.19 (8)O1—C1—C13—C142.07 (13)
C1—C2—C3—O2177.92 (9)C2—C1—C13—C14174.19 (8)
C5—C2—C3—O22.69 (14)O4—C12—C13—C1179.79 (8)
C1—C2—C3—C42.05 (15)C6—C12—C13—C10.41 (14)
C5—C2—C3—C4177.34 (8)O4—C12—C13—C144.28 (13)
C1—C2—C5—O3179.80 (8)C6—C12—C13—C14175.53 (8)
C3—C2—C5—O30.76 (14)C1—C13—C14—C1515.41 (13)
C1—C2—C5—C60.67 (14)C12—C13—C14—C15168.67 (9)
C3—C2—C5—C6178.77 (8)C13—C14—C15—C163.69 (13)
O3—C5—C6—C12178.33 (8)C14—C15—C16—O132.30 (12)
C2—C5—C6—C122.12 (14)C14—C15—C16—C18147.53 (9)
O3—C5—C6—C71.33 (14)C14—C15—C16—C1787.03 (11)
C2—C5—C6—C7178.22 (8)C13—C1—O1—C1629.94 (12)
C12—C6—C7—C81.98 (14)C2—C1—O1—C16153.63 (8)
C5—C6—C7—C8177.68 (9)C15—C16—O1—C145.75 (10)
C6—C7—C8—C91.28 (16)C18—C16—O1—C1165.98 (8)
C7—C8—C9—O44.60 (14)C17—C16—O1—C175.44 (10)
C7—C8—C9—C11122.24 (11)C6—C12—O4—C92.36 (14)
C7—C8—C9—C10114.16 (11)C13—C12—O4—C9177.44 (8)
C5—C6—C12—O4178.22 (8)C8—C9—O4—C125.12 (13)
C7—C6—C12—O41.45 (14)C11—C9—O4—C12126.46 (9)
C5—C6—C12—C131.58 (14)C10—C9—O4—C12116.31 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.762.4897 (11)148
C11—H11A···O2i0.962.483.3829 (14)156
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H20O4
Mr300.34
Crystal system, space groupTriclinic, P1
Temperature (K)446
a, b, c (Å)8.5039 (6), 9.5370 (6), 10.7859 (7)
α, β, γ (°)102.180 (3), 102.621 (3), 110.671 (3)
V3)757.86 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.21 × 0.2
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17650, 3770, 3284
Rint0.018
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.06
No. of reflections3770
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.762.4897 (11)147.9
C11—H11A···O2i0.962.483.3829 (14)156.3
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

SP thanks the College of Agriculture, Engineering and Science of the University of KwaZulu-Natal for a doctoral bursary.

References

First citationAdler, M. J. & Baldwin, S. W. (2009). Tetrahedron Lett. 50, 5075–5079.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, Y. R. & Li, X. (2007). Bull. Korean Chem. Soc. 28, 1739–1745.  CAS Google Scholar
First citationLee, Y. R. & Xia, L. (2007). Bull. Korean Chem. Soc. 28, 1579–1584.  CAS Google Scholar
First citationMondal, M., Puranik, V. G. & Argade, N. P. (2007). J. Org. Chem. 72, 2068–2076.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNarender, T., Khaliq, T., Shweta, Nishi, Goyal, N. & Guptab, S. (2005). Bioorg. Med. Chem. 13, 6543–6550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds