metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Ethyl-2-oxazoline-κN)bis­(N-ethyl-N-phenyl­di­thio­carbamato-κ2S,S′)cadmium

aChemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa, and bDepartment of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: dconwudiwe@webmail.co.za

(Received 24 August 2012; accepted 7 September 2012; online 29 September 2012)

In the title compound, [Cd(C9H10NS2)2(C5H9NO)], the CdII atom is five-coordinated in a distorted square-pyramidal geometry by four S atoms from two chelating N-ethyl-N-phenyl dithio­carbamate ligands and one N atom from a 2-ethyl-2-oxazoline ligand. Inter­molecular C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For background to and applications of dithio­carbamates, see: Green et al. (2004[Green, M., Prince, P., Gardener, M. & Steed, J. (2004). Adv. Mater. 16, 994-996.]); Pickett & O'Brien (2001[Pickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467-479.]); Tiekink (2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]); Valarmathi et al. (2011[Valarmathi, P., Thirumaran, S., Ragi, P. & Ciattini, S. (2011). J. Coord. Chem. 64, 4157-4167.]). For the synthesis of the parent dithio­carbamate, see: Onwudiwe & Ajibade (2010[Onwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431-1436.]). For information regarding dithio­carbanate adducts, see: Green & O'Brien (1997[Green, M. & O'Brien, P. (1997). Adv. Mater. Opt. Electron. 7, 277-279.]); Ivanov et al. (2007[Ivanov, V., Zaeva, A. S., Novikova, E. V., Gerasimenko, A. V. & Forsling, W. (2007). Russ. J. Coord. Chem. 33, 233-243.]); Onwudiwe et al. (2011[Onwudiwe, D. C., Ajibade, P. A. & Omondi, B. (2011). J. Mol. Struct. 987, 58-66.]). For the synthesis and structures of dithio­carbamates incorporating oxazoline mol­ecules, see: Decken et al. (2006[Decken, A., Eisnor, C. R., Gossage, R. A. & Jackson, S. M. (2006). Inorg. Chim. Acta, 359, 1743-1753.]); Gossage & Jenkins (2008[Gossage, R. A. & Jenkins, H. A. (2008). Anal. Sci. 24, x155-x156.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H10NS2)2(C5H9NO)]

  • Mr = 604.18

  • Triclinic, [P \overline 1]

  • a = 10.3119 (2) Å

  • b = 11.4395 (2) Å

  • c = 12.2432 (3) Å

  • α = 84.756 (1)°

  • β = 77.395 (1)°

  • γ = 70.290 (1)°

  • V = 1326.61 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 200 K

  • 0.37 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.75, Tmax = 0.82

  • 23482 measured reflections

  • 6626 independent reflections

  • 5934 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.06

  • 6626 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯Cg1i 0.95 2.61 3.558 (2) 177
C32—H32ACg1ii 0.99 2.72 3.511 (2) 137
C13—H13⋯Cg2iii 0.95 2.61 3.510 (2) 157
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

One of the attractive features of group 12 dithiocarbamate chemistry is the extensive structural motifs which they display, ranging from monomeric, dimeric, tetrameric, linear polymeric and layered structures (Tiekink, 2003). These compounds tend to reversibly add organic N-, O-, S- and P-donor bases to give heteroligand complexes generally called adducts (Ivanov et al., 2007). Such adducts are of practical interest as they display a wide range of applications (Green et al., 2004; Pickett & O'Brien, 2001; Valarmathi et al., 2011). The molecules are usually highly volatile and are used in improved synthesis of nanoparticulate chalcogenide semiconductors, with good luminescent properties (Green and O'Brien, 1997). As part of our interest in the studies of N-donor adducts of group 12 dithiocarbamates (Onwudiwe et al., 2011), the structure analysis of the title compound was undertaken.

The CdII atom in the title compound is square-pyramidal five coordinate with four S atoms from two N-ethyl-N-phenyl dithiocarbamate ligands and one N atom from a 2-ethyl-2-oxazoline ligand (Fig. 1). The two dithiocarbamates are at an obtuse angle of 130.6 ° to each other and form an angle of 89.8 ° and 85.6 ° with the oxazoline ligand. The Cd atom is 0.7877 (1) Å above the plane formed by the four S atoms. The Cd—S bond lengths vary from 2.5615 (5) to 2.7154 (4) Å while the Cd—N bond length is 2.2564 (14) Å. None of the ethyl groups shows any signifuicant disorder. The dithiocarbamate ethyl groups have intramolecular interactions with the S atoms C18—H18A···S11 and C28—H28A···S21, with contact distances of 2.60 and 2.56 Å respectively. Adjacent molecules are linked by C—H···π interactions (Table 1, Fig. 2). Packing of the title compound is shown in Fig. 3.

Related literature top

For background to and applications of dithiocarbamates, see: Green et al. (2004); Pickett & O'Brien (2001); Tiekink (2003); Valarmathi et al. (2011). For the synthesis of the parent dithiocarbamate, see: Onwudiwe & Ajibade (2010). For information regarding dithiocarbanate adducts, see: Green & O'Brien (1997); Ivanov et al. (2007); Onwudiwe et al. (2011). For the synthesis and structures of dithiocarbamates incorporating oxazoline molecules, see: Decken et al. (2006); Gossage & Jenkins (2008).

Experimental top

(N-Ethyl-N-phenyl dithiocarbamate)cadmium (2 mmol, 1.01 g) was suspended in 75 ml of warm dichloromethane (Onwudiwe & Ajibade, 2010). 2-Ethyl-2-oxazoline was dropwise added to the stirring warm mixture. The clear solution obtained after the addition of oxazoline was stirred for 10 h. The colourless solution obtained was filtered and the solvent was removed. The resulting crude product was redissolved in boiling acetone (Decken et al., 2006; Gossage & Jenkins, 2008). After a few days, single crystals suitable for X-ray structure analysis were obtained (m.p. 288–290 °C).

Refinement top

H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 (CH), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

One of the attractive features of group 12 dithiocarbamate chemistry is the extensive structural motifs which they display, ranging from monomeric, dimeric, tetrameric, linear polymeric and layered structures (Tiekink, 2003). These compounds tend to reversibly add organic N-, O-, S- and P-donor bases to give heteroligand complexes generally called adducts (Ivanov et al., 2007). Such adducts are of practical interest as they display a wide range of applications (Green et al., 2004; Pickett & O'Brien, 2001; Valarmathi et al., 2011). The molecules are usually highly volatile and are used in improved synthesis of nanoparticulate chalcogenide semiconductors, with good luminescent properties (Green and O'Brien, 1997). As part of our interest in the studies of N-donor adducts of group 12 dithiocarbamates (Onwudiwe et al., 2011), the structure analysis of the title compound was undertaken.

The CdII atom in the title compound is square-pyramidal five coordinate with four S atoms from two N-ethyl-N-phenyl dithiocarbamate ligands and one N atom from a 2-ethyl-2-oxazoline ligand (Fig. 1). The two dithiocarbamates are at an obtuse angle of 130.6 ° to each other and form an angle of 89.8 ° and 85.6 ° with the oxazoline ligand. The Cd atom is 0.7877 (1) Å above the plane formed by the four S atoms. The Cd—S bond lengths vary from 2.5615 (5) to 2.7154 (4) Å while the Cd—N bond length is 2.2564 (14) Å. None of the ethyl groups shows any signifuicant disorder. The dithiocarbamate ethyl groups have intramolecular interactions with the S atoms C18—H18A···S11 and C28—H28A···S21, with contact distances of 2.60 and 2.56 Å respectively. Adjacent molecules are linked by C—H···π interactions (Table 1, Fig. 2). Packing of the title compound is shown in Fig. 3.

For background to and applications of dithiocarbamates, see: Green et al. (2004); Pickett & O'Brien (2001); Tiekink (2003); Valarmathi et al. (2011). For the synthesis of the parent dithiocarbamate, see: Onwudiwe & Ajibade (2010). For information regarding dithiocarbanate adducts, see: Green & O'Brien (1997); Ivanov et al. (2007); Onwudiwe et al. (2011). For the synthesis and structures of dithiocarbamates incorporating oxazoline molecules, see: Decken et al. (2006); Gossage & Jenkins (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Selected intermolecular C—H···π contacts (blue dashed lines). [Cg1 is the centroid of the C11–C16 ring. Symmetry code: (i) -x+1, -y, -z+1.]
[Figure 3] Fig. 3. Crystal packing of the title compound, viewed along the c-axis.
(2-Ethyl-2-oxazoline-κN)bis(N-ethyl-N- phenyldithiocarbamato-κ2S,S')cadmium top
Crystal data top
[Cd(C9H10NS2)2(C5H9NO)]Z = 2
Mr = 604.18F(000) = 616
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Melting point: 562.15 K
a = 10.3119 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4395 (2) ÅCell parameters from 192 reflections
c = 12.2432 (3) Åθ = 1.7–25.5°
α = 84.756 (1)°µ = 1.16 mm1
β = 77.395 (1)°T = 200 K
γ = 70.290 (1)°Block, colourless
V = 1326.61 (5) Å30.37 × 0.23 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
6626 independent reflections
Radiation source: sealed tube5934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.75, Tmax = 0.82k = 1515
23482 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0233P)2 + 0.6233P]
where P = (Fo2 + 2Fc2)/3
6626 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cd(C9H10NS2)2(C5H9NO)]γ = 70.290 (1)°
Mr = 604.18V = 1326.61 (5) Å3
Triclinic, P1Z = 2
a = 10.3119 (2) ÅMo Kα radiation
b = 11.4395 (2) ŵ = 1.16 mm1
c = 12.2432 (3) ÅT = 200 K
α = 84.756 (1)°0.37 × 0.23 × 0.18 mm
β = 77.395 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6626 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5934 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.82Rint = 0.017
23482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.06Δρmax = 0.67 e Å3
6626 reflectionsΔρmin = 0.41 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.497101 (12)0.297575 (11)0.710351 (10)0.02896 (4)
S110.70543 (5)0.08672 (4)0.66862 (3)0.03257 (9)
S120.55149 (5)0.24235 (4)0.49921 (3)0.03339 (9)
S210.42738 (4)0.25089 (4)0.93305 (3)0.03282 (9)
S220.23016 (4)0.35727 (4)0.77674 (3)0.03088 (9)
O30.70297 (14)0.58511 (12)0.68191 (11)0.0403 (3)
N10.75835 (14)0.02943 (12)0.45349 (11)0.0269 (3)
N20.16026 (15)0.25674 (15)0.97431 (11)0.0316 (3)
N30.56806 (15)0.46441 (12)0.70659 (11)0.0293 (3)
C110.73383 (17)0.04933 (14)0.34024 (13)0.0263 (3)
C120.81004 (19)0.11050 (16)0.26380 (14)0.0325 (4)
H120.87680.13910.28580.039*
C130.7883 (2)0.12968 (16)0.15508 (15)0.0369 (4)
H130.83940.17250.10240.044*
C140.6923 (2)0.08674 (16)0.12285 (15)0.0357 (4)
H140.67770.10010.04810.043*
C150.61753 (19)0.02427 (15)0.19940 (15)0.0341 (4)
H150.5520.00560.1770.041*
C160.63808 (18)0.00527 (15)0.30856 (14)0.0303 (3)
H160.5870.03760.36120.036*
C170.67929 (17)0.11157 (14)0.53306 (13)0.0256 (3)
C180.86741 (19)0.08783 (16)0.47616 (15)0.0336 (4)
H18A0.90610.07650.54020.04*
H18B0.94520.10840.410.04*
C190.8089 (2)0.19382 (18)0.5024 (2)0.0489 (5)
H19A0.77930.21080.43640.073*
H19B0.72790.17140.56490.073*
H19C0.88150.26810.52310.073*
C210.02419 (16)0.28275 (15)0.94601 (13)0.0262 (3)
C220.08658 (19)0.38602 (16)0.98745 (15)0.0345 (4)
H220.07340.44251.03280.041*
C230.2169 (2)0.40647 (19)0.96237 (17)0.0430 (5)
H230.29310.47840.98890.052*
C240.2363 (2)0.3226 (2)0.89888 (17)0.0453 (5)
H240.32660.33570.88350.054*
C250.1251 (2)0.2200 (2)0.85763 (16)0.0434 (5)
H250.13870.16310.8130.052*
C260.00623 (19)0.19937 (17)0.88082 (14)0.0335 (4)
H260.08310.12870.85230.04*
C270.26380 (16)0.28540 (15)0.90230 (13)0.0258 (3)
C280.1801 (2)0.1855 (2)1.08128 (16)0.0456 (5)
H28A0.28190.14581.07960.055*
H28B0.13750.11891.08780.055*
C290.1152 (3)0.2663 (3)1.18189 (18)0.0654 (7)
H29A0.15470.33411.17470.098*
H29B0.13520.21661.24950.098*
H29C0.01320.30091.18710.098*
C310.4824 (2)0.57458 (17)0.77370 (17)0.0422 (4)
H31A0.46040.55160.85390.051*
H31B0.39330.61690.74760.051*
C320.5742 (2)0.65695 (17)0.75524 (16)0.0389 (4)
H32A0.52870.7370.71910.047*
H32B0.59350.67360.8270.047*
C330.68437 (18)0.47990 (15)0.66044 (14)0.0292 (3)
C340.80295 (19)0.39458 (17)0.58279 (15)0.0366 (4)
H34A0.78990.31240.5860.044*
H34B0.89220.38330.60670.044*
C350.8113 (3)0.4459 (2)0.46306 (18)0.0601 (6)
H35A0.89270.390.41410.09*
H35B0.82140.52830.46030.09*
H35C0.72530.45230.43780.09*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02741 (7)0.03168 (7)0.02647 (6)0.01143 (5)0.00288 (4)0.00717 (4)
S110.0394 (2)0.0327 (2)0.02396 (19)0.00906 (18)0.00617 (17)0.00305 (15)
S120.0342 (2)0.0327 (2)0.02624 (19)0.00064 (17)0.00540 (17)0.00694 (16)
S210.0250 (2)0.0492 (2)0.0274 (2)0.01531 (18)0.00557 (16)0.00294 (17)
S220.0253 (2)0.0397 (2)0.02583 (19)0.01067 (17)0.00322 (15)0.00416 (16)
O30.0424 (7)0.0316 (6)0.0481 (8)0.0174 (6)0.0010 (6)0.0048 (5)
N10.0295 (7)0.0242 (6)0.0247 (6)0.0070 (5)0.0023 (5)0.0033 (5)
N20.0252 (7)0.0490 (9)0.0226 (6)0.0160 (6)0.0039 (5)0.0016 (6)
N30.0298 (7)0.0258 (6)0.0285 (7)0.0071 (6)0.0002 (6)0.0040 (5)
C110.0304 (8)0.0216 (7)0.0232 (7)0.0062 (6)0.0009 (6)0.0054 (6)
C120.0361 (9)0.0307 (8)0.0315 (8)0.0155 (7)0.0008 (7)0.0044 (7)
C130.0431 (10)0.0317 (8)0.0304 (9)0.0121 (8)0.0024 (7)0.0024 (7)
C140.0423 (10)0.0307 (8)0.0276 (8)0.0035 (7)0.0060 (7)0.0036 (7)
C150.0368 (9)0.0277 (8)0.0374 (9)0.0069 (7)0.0096 (7)0.0083 (7)
C160.0318 (9)0.0257 (7)0.0322 (8)0.0109 (7)0.0006 (7)0.0035 (6)
C170.0271 (8)0.0268 (7)0.0239 (7)0.0123 (6)0.0006 (6)0.0034 (6)
C180.0313 (9)0.0306 (8)0.0329 (9)0.0040 (7)0.0024 (7)0.0046 (7)
C190.0559 (13)0.0295 (9)0.0625 (13)0.0110 (9)0.0224 (11)0.0062 (9)
C210.0241 (8)0.0348 (8)0.0213 (7)0.0136 (6)0.0017 (6)0.0006 (6)
C220.0343 (9)0.0313 (8)0.0367 (9)0.0160 (7)0.0046 (7)0.0029 (7)
C230.0279 (9)0.0395 (10)0.0506 (11)0.0070 (8)0.0029 (8)0.0120 (8)
C240.0294 (9)0.0681 (14)0.0429 (11)0.0235 (9)0.0141 (8)0.0231 (10)
C250.0487 (12)0.0616 (13)0.0332 (9)0.0317 (10)0.0142 (8)0.0010 (9)
C260.0340 (9)0.0377 (9)0.0282 (8)0.0115 (7)0.0034 (7)0.0058 (7)
C270.0242 (8)0.0301 (8)0.0231 (7)0.0095 (6)0.0014 (6)0.0062 (6)
C280.0390 (11)0.0690 (14)0.0330 (10)0.0249 (10)0.0093 (8)0.0121 (9)
C290.0788 (18)0.099 (2)0.0295 (10)0.0434 (16)0.0114 (11)0.0008 (11)
C310.0410 (10)0.0313 (9)0.0446 (11)0.0061 (8)0.0069 (8)0.0124 (8)
C320.0496 (11)0.0295 (8)0.0354 (9)0.0090 (8)0.0069 (8)0.0077 (7)
C330.0328 (9)0.0259 (7)0.0281 (8)0.0102 (7)0.0048 (7)0.0030 (6)
C340.0323 (9)0.0337 (9)0.0373 (9)0.0091 (7)0.0042 (7)0.0010 (7)
C350.0701 (16)0.0582 (14)0.0361 (11)0.0131 (12)0.0092 (10)0.0006 (10)
Geometric parameters (Å, º) top
Cd1—N32.2563 (14)C19—H19A0.98
Cd1—S222.5615 (4)C19—H19B0.98
Cd1—S122.6121 (4)C19—H19C0.98
Cd1—S112.6354 (5)C21—C261.380 (2)
Cd1—S212.7154 (4)C21—C221.380 (2)
S11—C171.7221 (16)C22—C231.382 (3)
S12—C171.7152 (17)C22—H220.95
S21—C271.7157 (16)C23—C241.378 (3)
S22—C271.7230 (16)C23—H230.95
O3—C331.338 (2)C24—C251.377 (3)
O3—C321.457 (2)C24—H240.95
N1—C171.342 (2)C25—C261.382 (3)
N1—C111.447 (2)C25—H250.95
N1—C181.481 (2)C26—H260.95
N2—C271.341 (2)C28—C291.500 (3)
N2—C211.445 (2)C28—H28A0.99
N2—C281.493 (2)C28—H28B0.99
N3—C331.272 (2)C29—H29A0.98
N3—C311.472 (2)C29—H29B0.98
C11—C121.383 (2)C29—H29C0.98
C11—C161.385 (2)C31—C321.518 (3)
C12—C131.384 (3)C31—H31A0.99
C12—H120.95C31—H31B0.99
C13—C141.382 (3)C32—H32A0.99
C13—H130.95C32—H32B0.99
C14—C151.385 (3)C33—C341.486 (2)
C14—H140.95C34—C351.524 (3)
C15—C161.385 (2)C34—H34A0.99
C15—H150.95C34—H34B0.99
C16—H160.95C35—H35A0.98
C18—C191.508 (3)C35—H35B0.98
C18—H18A0.99C35—H35C0.98
C18—H18B0.99
N3—Cd1—S22110.83 (4)C22—C21—N2120.50 (15)
N3—Cd1—S12103.12 (4)C21—C22—C23119.38 (17)
S22—Cd1—S12106.646 (14)C21—C22—H22120.3
N3—Cd1—S11113.83 (4)C23—C22—H22120.3
S22—Cd1—S11134.900 (15)C24—C23—C22120.08 (18)
S12—Cd1—S1169.059 (13)C24—C23—H23120.0
N3—Cd1—S21102.68 (4)C22—C23—H23120.0
S22—Cd1—S2168.706 (13)C25—C24—C23120.13 (17)
S12—Cd1—S21153.616 (15)C25—C24—H24119.9
S11—Cd1—S2195.366 (14)C23—C24—H24119.9
C17—S11—Cd185.11 (6)C24—C25—C26120.36 (18)
C17—S12—Cd185.98 (5)C24—C25—H25119.8
C27—S21—Cd182.05 (5)C26—C25—H25119.8
C27—S22—Cd186.74 (5)C21—C26—C25119.11 (17)
C33—O3—C32106.82 (13)C21—C26—H26120.4
C17—N1—C11120.28 (13)C25—C26—H26120.4
C17—N1—C18123.19 (14)N2—C27—S21121.16 (12)
C11—N1—C18116.43 (13)N2—C27—S22118.67 (12)
C27—N2—C21120.66 (13)S21—C27—S22120.16 (9)
C27—N2—C28123.45 (14)N2—C28—C29112.39 (19)
C21—N2—C28115.58 (13)N2—C28—H28A109.1
C33—N3—C31107.76 (14)C29—C28—H28A109.1
C33—N3—Cd1130.29 (11)N2—C28—H28B109.1
C31—N3—Cd1121.64 (11)C29—C28—H28B109.1
C12—C11—C16120.73 (15)H28A—C28—H28B107.9
C12—C11—N1118.80 (15)C28—C29—H29A109.5
C16—C11—N1120.45 (14)C28—C29—H29B109.5
C11—C12—C13119.47 (16)H29A—C29—H29B109.5
C11—C12—H12120.3C28—C29—H29C109.5
C13—C12—H12120.3H29A—C29—H29C109.5
C14—C13—C12120.22 (16)H29B—C29—H29C109.5
C14—C13—H13119.9N3—C31—C32104.14 (15)
C12—C13—H13119.9N3—C31—H31A110.9
C13—C14—C15120.05 (16)C32—C31—H31A110.9
C13—C14—H14120.0N3—C31—H31B110.9
C15—C14—H14120.0C32—C31—H31B110.9
C16—C15—C14120.12 (16)H31A—C31—H31B108.9
C16—C15—H15119.9O3—C32—C31103.97 (13)
C14—C15—H15119.9O3—C32—H32A111.0
C15—C16—C11119.40 (15)C31—C32—H32A111.0
C15—C16—H16120.3O3—C32—H32B111.0
C11—C16—H16120.3C31—C32—H32B111.0
N1—C17—S12119.65 (12)H32A—C32—H32B109.0
N1—C17—S11120.50 (12)N3—C33—O3117.29 (15)
S12—C17—S11119.85 (9)N3—C33—C34127.25 (15)
N1—C18—C19111.61 (15)O3—C33—C34115.45 (15)
N1—C18—H18A109.3C33—C34—C35110.98 (16)
C19—C18—H18A109.3C33—C34—H34A109.4
N1—C18—H18B109.3C35—C34—H34A109.4
C19—C18—H18B109.3C33—C34—H34B109.4
H18A—C18—H18B108.0C35—C34—H34B109.4
C18—C19—H19A109.5H34A—C34—H34B108.0
C18—C19—H19B109.5C34—C35—H35A109.5
H19A—C19—H19B109.5C34—C35—H35B109.5
C18—C19—H19C109.5H35A—C35—H35B109.5
H19A—C19—H19C109.5C34—C35—H35C109.5
H19B—C19—H19C109.5H35A—C35—H35C109.5
C26—C21—C22120.92 (16)H35B—C35—H35C109.5
C26—C21—N2118.52 (15)
N3—Cd1—S11—C1795.97 (6)Cd1—S12—C17—N1179.40 (12)
S22—Cd1—S11—C1792.53 (5)Cd1—S12—C17—S110.71 (9)
S12—Cd1—S11—C170.43 (5)Cd1—S11—C17—N1179.41 (13)
S21—Cd1—S11—C17157.62 (5)Cd1—S11—C17—S120.70 (8)
N3—Cd1—S12—C17111.22 (6)C17—N1—C18—C1991.8 (2)
S22—Cd1—S12—C17131.98 (5)C11—N1—C18—C1984.61 (19)
S11—Cd1—S12—C170.43 (5)C27—N2—C21—C2682.5 (2)
S21—Cd1—S12—C1756.47 (6)C28—N2—C21—C2691.38 (19)
N3—Cd1—S21—C27116.69 (6)C27—N2—C21—C22100.24 (19)
S22—Cd1—S21—C279.02 (5)C28—N2—C21—C2285.9 (2)
S12—Cd1—S21—C2775.59 (6)C26—C21—C22—C230.5 (3)
S11—Cd1—S21—C27127.39 (5)N2—C21—C22—C23177.74 (15)
N3—Cd1—S22—C27104.87 (6)C21—C22—C23—C241.6 (3)
S12—Cd1—S22—C27143.59 (5)C22—C23—C24—C251.8 (3)
S11—Cd1—S22—C2766.81 (6)C23—C24—C25—C260.9 (3)
S21—Cd1—S22—C278.91 (5)C22—C21—C26—C250.3 (3)
S22—Cd1—N3—C33165.44 (14)N2—C21—C26—C25176.91 (15)
S12—Cd1—N3—C3351.65 (16)C24—C25—C26—C210.2 (3)
S11—Cd1—N3—C3321.00 (16)C21—N2—C27—S21178.05 (12)
S21—Cd1—N3—C33122.78 (15)C28—N2—C27—S214.7 (2)
S22—Cd1—N3—C3121.83 (15)C21—N2—C27—S221.6 (2)
S12—Cd1—N3—C31135.62 (13)C28—N2—C27—S22174.93 (14)
S11—Cd1—N3—C31151.73 (13)Cd1—S21—C27—N2165.05 (14)
S21—Cd1—N3—C3149.95 (14)Cd1—S21—C27—S2214.54 (8)
C17—N1—C11—C1292.93 (19)Cd1—S22—C27—N2164.30 (13)
C18—N1—C11—C1290.55 (18)Cd1—S22—C27—S2115.31 (9)
C17—N1—C11—C1688.54 (19)C27—N2—C28—C29106.4 (2)
C18—N1—C11—C1687.97 (19)C21—N2—C28—C2979.9 (2)
C16—C11—C12—C131.2 (3)C33—N3—C31—C320.5 (2)
N1—C11—C12—C13179.69 (15)Cd1—N3—C31—C32174.66 (11)
C11—C12—C13—C140.8 (3)C33—O3—C32—C311.35 (19)
C12—C13—C14—C150.0 (3)N3—C31—C32—O31.1 (2)
C13—C14—C15—C160.4 (3)C31—N3—C33—O30.4 (2)
C14—C15—C16—C110.0 (3)Cd1—N3—C33—O3173.07 (11)
C12—C11—C16—C150.8 (2)C31—N3—C33—C34178.45 (18)
N1—C11—C16—C15179.31 (14)Cd1—N3—C33—C348.1 (3)
C11—N1—C17—S121.5 (2)C32—O3—C33—N31.2 (2)
C18—N1—C17—S12177.80 (12)C32—O3—C33—C34177.82 (15)
C11—N1—C17—S11178.59 (11)N3—C33—C34—C35106.5 (2)
C18—N1—C17—S112.3 (2)O3—C33—C34—C3572.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26···Cg1i0.952.613.558 (2)177
C32—H32A···Cg1ii0.992.723.511 (2)137
C13—H13···Cg2iii0.952.613.510 (2)157
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C9H10NS2)2(C5H9NO)]
Mr604.18
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)10.3119 (2), 11.4395 (2), 12.2432 (3)
α, β, γ (°)84.756 (1), 77.395 (1), 70.290 (1)
V3)1326.61 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.37 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.75, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
23482, 6626, 5934
Rint0.017
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.06
No. of reflections6626
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26···Cg1i0.952.613.558 (2)177
C32—H32A···Cg1ii0.992.723.511 (2)137
C13—H13···Cg2iii0.952.613.510 (2)157
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z1.
 

Acknowledgements

The financial support from North-West University, Potchefstroom, South Africa, is gratefully acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDecken, A., Eisnor, C. R., Gossage, R. A. & Jackson, S. M. (2006). Inorg. Chim. Acta, 359, 1743–1753.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGossage, R. A. & Jenkins, H. A. (2008). Anal. Sci. 24, x155–x156.  CAS Google Scholar
First citationGreen, M. & O'Brien, P. (1997). Adv. Mater. Opt. Electron. 7, 277–279.  CrossRef CAS Google Scholar
First citationGreen, M., Prince, P., Gardener, M. & Steed, J. (2004). Adv. Mater. 16, 994–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationIvanov, V., Zaeva, A. S., Novikova, E. V., Gerasimenko, A. V. & Forsling, W. (2007). Russ. J. Coord. Chem. 33, 233–243.  Web of Science CrossRef CAS Google Scholar
First citationOnwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431–1436.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnwudiwe, D. C., Ajibade, P. A. & Omondi, B. (2011). J. Mol. Struct. 987, 58–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationPickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467–479.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationValarmathi, P., Thirumaran, S., Ragi, P. & Ciattini, S. (2011). J. Coord. Chem. 64, 4157–4167.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds