metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Chloridobis(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)oxidovanadium(IV) chloride ethanol monosolvate monohydrate

aDepartment of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran, and bDepartment of Petroleum Engineering, Islamic Azad University, Omidieh Branch, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 9 September 2012; accepted 22 September 2012; online 29 September 2012)

In the title compound, [VClO(C12H12N2)2]Cl·C2H5OH·H2O, the VIV atom is six-coordinated in a distorted octa­hedral geometry by four N atoms from two 4,4′-dimethyl-2,2′-bipyridine ligands, one O atom and one Cl atom. In the crystal, O—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds and ππ contacts between the pyridine rings [centroid–centroid distances = 3.7236 (17) and 3.6026 (19) Å] stabilize the structure. Intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are also present.

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Alizadeh et al. (2010[Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.]); Amani et al. (2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.], 2010[Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.]); Shirvan & Haydari Dezfuli (2011[Shirvan, S. A. & Haydari Dezfuli, S. (2011). Acta Cryst. E67, m1866-m1867.], 2012a[Shirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m1006-m1007.],b[Shirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m1189-m1190.]); Triantafillou et al. (2004[Triantafillou, G. D., Tolis, E. I., Terzis, A., Deligiannakis, Y., Raptopoulou, C. P., Sigalas, M. P. & Kabanos, T. A. (2004). Inorg. Chem. 43, 79-91.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [VClO(C12H12N2)2]Cl·C2H6O·H2O

  • Mr = 570.40

  • Triclinic, [P \overline 1]

  • a = 9.6955 (11) Å

  • b = 10.9905 (12) Å

  • c = 14.5739 (17) Å

  • α = 68.711 (2)°

  • β = 72.401 (2)°

  • γ = 81.381 (2)°

  • V = 1377.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 120 K

  • 0.32 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.954

  • 12257 measured reflections

  • 5363 independent reflections

  • 4398 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.144

  • S = 1.00

  • 5363 reflections

  • 330 parameters

  • H-atom parameters constrained

  • Δρmax = 2.09 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯Cl2 0.93 2.24 3.128 (3) 159
O1W—H1W⋯Cl2i 0.84 2.45 3.221 (3) 152
O1W—H2W⋯Cl2ii 0.92 2.37 3.284 (3) 171
C1—H1B⋯O1 0.95 2.51 2.999 (4) 112
C2—H2A⋯O1Siii 0.95 2.41 3.301 (4) 155
C4—H4A⋯Cl1iv 0.95 2.76 3.670 (4) 160
C7—H7A⋯Cl1iv 0.95 2.77 3.626 (3) 151
C9—H9A⋯Cl2ii 0.95 2.63 3.561 (4) 165
C13—H13A⋯O1Siv 0.95 2.59 3.284 (4) 130
C14—H14A⋯Cl2iv 0.95 2.62 3.558 (3) 170
C19—H19A⋯O1v 0.95 2.52 3.229 (4) 132
C21—H21A⋯O1Wvi 0.95 2.45 3.315 (5) 151
C22—H22A⋯Cl1 0.95 2.64 3.262 (3) 123
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+2; (vi) -x, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we reported the synthesis and crystal structures of [In(4,4'-dmbipy)Cl3(MeOH)].MeOH, (II) (Shirvan & Haydari Dezfuli, 2012b), and [CdBr2(4,4'-dmbipy)(DMSO)], (III) (Shirvan & Haydari Dezfuli, 2012a) (4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine, DMSO = dimethyl sulfoxide). 4,4'-Dmbipy is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of [Hg(4,4'-dmbipy)I2], (IV) (Yousefi et al., 2008), [Hg(4,4'-dmbipy)Br2], (V) (Kalateh et al., 2008), [Fe(4,4'-dmbipy)Cl3(DMSO)], (VI) (Amani et al., 2009), [Pt(4,4'-dmbipy)Cl4], (VII) (Hojjat Kashani et al., 2008), [Cd(4,4'-dmbipy)I2(DMSO)], (VIII) (Kalateh et al., 2010), [Zn(4,4'-dmbipy)Br2], (IX) (Alizadeh et al., 2010), [Zn(4,4'-dmbipy)(H2O)(NO3)2], (X) (Shirvan & Haydari Dezfuli, 2011) and [In(4,4'-dmbpy)Cl3(DMSO)], (XI) (Ahmadi et al., 2008). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the VIV atom is six-coordinated in a distorted octahedral geometry by four N atoms from two 4,4'-dmbipy ligands, one O atom and one Cl atom. There are also one ethanol and one water solvent molecules in the asymmetric unit. The V—Cl, V—N and V—O bond lengths and angles are in good agreement with the corresponding values in [VOCl(dtbipy)Cl]Cl.CH2Cl2 (Triantafillou et al., 2004) (dtbipy = 4,4'-di-tert-butyl-2,2'-bipyridine).

In the crystal, intermolecular O—H···Cl, C—H···O and C—H···Cl hydrogen bonds, intramolecular C—H···O and C—H···Cl hydrogen bonds (Table 1) and ππ contacts between the pyridine rings (Fig. 2), Cg3···Cg4i and Cg5···Cg6ii, with centroid–centroid distances of 3.7236 (17) and 3.6026 (19) Å [symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -x, 1-y, 2-z. Cg3, Cg4, Cg5 and Cg6 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C13–C17 and N4/C18–C22 rings, respectively], stabilize the structure.

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Shirvan & Haydari Dezfuli (2011, 2012a,b); Triantafillou et al. (2004); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2'-bipyridine (0.29 g, 1.60 mmol) in ethanol (20 ml) was added to a solution of VCl3 (0.13 g, 0.80 mmol) in water (4 ml) and the resulting violet solution was stirred at 323 K for 40 min. Then, it was left to evaporate slowly at room temperature. After six days, green prismatic crystals of the title compound were isolated (yield: 0.32 g, 74.0%).

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). H atoms of hydroxyl group and water molecules were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.2Ueq(O). There is a high residual peak of 2.09 e Å-3 near V1 atom due to the absorption effects that could not be correctly account for. The highest residual electron density was found at 0.84 Å from V1 atom and the deepest hole at 0.65 Å from V1 atom.

Structure description top

Recently, we reported the synthesis and crystal structures of [In(4,4'-dmbipy)Cl3(MeOH)].MeOH, (II) (Shirvan & Haydari Dezfuli, 2012b), and [CdBr2(4,4'-dmbipy)(DMSO)], (III) (Shirvan & Haydari Dezfuli, 2012a) (4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine, DMSO = dimethyl sulfoxide). 4,4'-Dmbipy is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of [Hg(4,4'-dmbipy)I2], (IV) (Yousefi et al., 2008), [Hg(4,4'-dmbipy)Br2], (V) (Kalateh et al., 2008), [Fe(4,4'-dmbipy)Cl3(DMSO)], (VI) (Amani et al., 2009), [Pt(4,4'-dmbipy)Cl4], (VII) (Hojjat Kashani et al., 2008), [Cd(4,4'-dmbipy)I2(DMSO)], (VIII) (Kalateh et al., 2010), [Zn(4,4'-dmbipy)Br2], (IX) (Alizadeh et al., 2010), [Zn(4,4'-dmbipy)(H2O)(NO3)2], (X) (Shirvan & Haydari Dezfuli, 2011) and [In(4,4'-dmbpy)Cl3(DMSO)], (XI) (Ahmadi et al., 2008). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the VIV atom is six-coordinated in a distorted octahedral geometry by four N atoms from two 4,4'-dmbipy ligands, one O atom and one Cl atom. There are also one ethanol and one water solvent molecules in the asymmetric unit. The V—Cl, V—N and V—O bond lengths and angles are in good agreement with the corresponding values in [VOCl(dtbipy)Cl]Cl.CH2Cl2 (Triantafillou et al., 2004) (dtbipy = 4,4'-di-tert-butyl-2,2'-bipyridine).

In the crystal, intermolecular O—H···Cl, C—H···O and C—H···Cl hydrogen bonds, intramolecular C—H···O and C—H···Cl hydrogen bonds (Table 1) and ππ contacts between the pyridine rings (Fig. 2), Cg3···Cg4i and Cg5···Cg6ii, with centroid–centroid distances of 3.7236 (17) and 3.6026 (19) Å [symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -x, 1-y, 2-z. Cg3, Cg4, Cg5 and Cg6 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C13–C17 and N4/C18–C22 rings, respectively], stabilize the structure.

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Shirvan & Haydari Dezfuli (2011, 2012a,b); Triantafillou et al. (2004); Yousefi et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
cis-Chloridobis(4,4'-dimethyl-2,2'-bipyridine- κ2N,N')oxidovanadium(IV) chloride ethanol monosolvate monohydrate top
Crystal data top
[VClO(C12H12N2)2]Cl·C2H6O·H2OZ = 2
Mr = 570.40F(000) = 594
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6955 (11) ÅCell parameters from 600 reflections
b = 10.9905 (12) Åθ = 3.0–26.0°
c = 14.5739 (17) ŵ = 0.59 mm1
α = 68.711 (2)°T = 120 K
β = 72.401 (2)°Prism, green
γ = 81.381 (2)°0.32 × 0.14 × 0.09 mm
V = 1377.9 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5363 independent reflections
Radiation source: fine-focus sealed tube4398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.926, Tmax = 0.954k = 1313
12257 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.048P)2 + 3.916P]
where P = (Fo2 + 2Fc2)/3
5363 reflections(Δ/σ)max < 0.001
330 parametersΔρmax = 2.09 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[VClO(C12H12N2)2]Cl·C2H6O·H2Oγ = 81.381 (2)°
Mr = 570.40V = 1377.9 (3) Å3
Triclinic, P1Z = 2
a = 9.6955 (11) ÅMo Kα radiation
b = 10.9905 (12) ŵ = 0.59 mm1
c = 14.5739 (17) ÅT = 120 K
α = 68.711 (2)°0.32 × 0.14 × 0.09 mm
β = 72.401 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4398 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.954Rint = 0.026
12257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.00Δρmax = 2.09 e Å3
5363 reflectionsΔρmin = 0.89 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.17871 (6)0.53590 (5)0.73759 (4)0.02822 (16)
Cl10.10808 (9)0.45573 (9)0.63211 (6)0.0368 (2)
O10.0514 (2)0.6517 (2)0.74454 (15)0.0278 (5)
N10.3293 (3)0.6612 (3)0.61322 (19)0.0269 (6)
N20.3918 (3)0.4168 (2)0.71332 (19)0.0259 (6)
N40.0941 (3)0.3772 (3)0.86974 (19)0.0252 (5)
N30.2635 (3)0.5586 (3)0.84871 (18)0.0240 (5)
C10.2904 (4)0.7853 (3)0.5636 (2)0.0312 (7)
H1B0.19370.81620.58630.037*
C20.3840 (4)0.8699 (3)0.4815 (2)0.0327 (7)
H2A0.35250.95720.44960.039*
C30.5253 (4)0.8251 (3)0.4462 (2)0.0320 (7)
C40.5655 (4)0.6968 (3)0.4970 (2)0.0302 (7)
H4A0.66100.66340.47450.036*
C50.4672 (4)0.6175 (3)0.5801 (2)0.0263 (7)
C60.5039 (3)0.4814 (3)0.6387 (2)0.0260 (6)
C70.6429 (4)0.4240 (3)0.6201 (2)0.0301 (7)
H7A0.71950.47240.56740.036*
C80.6698 (4)0.2963 (3)0.6784 (2)0.0308 (7)
C90.5540 (4)0.2300 (3)0.7545 (2)0.0304 (7)
H9A0.56760.14220.79610.036*
C100.4187 (4)0.2928 (3)0.7691 (2)0.0279 (7)
H10A0.34060.24580.82130.033*
C110.6322 (4)0.9131 (4)0.3567 (3)0.0401 (9)
H11A0.59330.94580.29700.060*
H11B0.72390.86360.34120.060*
H11C0.64880.98700.37400.060*
C120.8190 (4)0.2308 (4)0.6607 (3)0.0419 (9)
H12A0.88570.27760.67350.063*
H12B0.85310.23210.58980.063*
H12C0.81510.14010.70720.063*
C130.3489 (3)0.6528 (3)0.8329 (2)0.0271 (7)
H13A0.38650.70920.76480.033*
C140.3850 (3)0.6718 (3)0.9109 (2)0.0290 (7)
H14A0.44620.74010.89640.035*
C150.3314 (3)0.5907 (3)1.0113 (2)0.0284 (7)
C160.2466 (3)0.4899 (3)1.0274 (2)0.0268 (7)
H16A0.21110.43041.09450.032*
C170.2136 (3)0.4755 (3)0.9458 (2)0.0235 (6)
C180.1223 (3)0.3723 (3)0.9571 (2)0.0229 (6)
C190.0696 (3)0.2746 (3)1.0491 (2)0.0267 (6)
H19A0.09200.27221.10880.032*
C200.0157 (3)0.1802 (3)1.0546 (2)0.0284 (7)
C210.0451 (3)0.1869 (3)0.9656 (3)0.0309 (7)
H21A0.10360.12430.96630.037*
C220.0116 (3)0.2859 (3)0.8754 (2)0.0291 (7)
H22A0.00900.28920.81480.035*
C230.3648 (4)0.6126 (4)1.0986 (3)0.0380 (8)
H23A0.30520.55701.16370.057*
H23B0.34340.70461.09330.057*
H23C0.46750.59051.09550.057*
C240.0717 (4)0.0744 (3)1.1545 (3)0.0384 (8)
H24A0.14470.02711.14830.058*
H24B0.11560.11331.20800.058*
H24C0.00850.01351.17240.058*
Cl20.35132 (10)0.10613 (9)0.13262 (9)0.0482 (3)
O1S0.3730 (3)0.1709 (3)0.3197 (2)0.0526 (7)
H1S0.34800.13800.27670.063*
O1W0.3211 (3)0.0038 (3)0.9589 (2)0.0505 (7)
H1W0.29640.03151.00880.061*
H2W0.41020.02470.92680.061*
C1S0.2544 (5)0.2599 (4)0.3334 (3)0.0511 (10)
H1SA0.21620.29010.27260.061*
H1SB0.28770.33710.33910.061*
C2S0.1359 (5)0.2007 (6)0.4266 (3)0.0722 (15)
H2SA0.06150.26850.43820.108*
H2SB0.17560.16200.48590.108*
H2SC0.09270.13260.41700.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0275 (3)0.0332 (3)0.0219 (3)0.0078 (2)0.0058 (2)0.0050 (2)
Cl10.0360 (5)0.0488 (5)0.0279 (4)0.0096 (4)0.0037 (3)0.0165 (4)
O10.0276 (11)0.0311 (11)0.0173 (10)0.0014 (9)0.0052 (8)0.0089 (9)
N10.0318 (14)0.0295 (14)0.0196 (12)0.0053 (11)0.0031 (11)0.0102 (11)
N20.0328 (14)0.0264 (13)0.0188 (12)0.0083 (11)0.0039 (11)0.0078 (10)
N40.0222 (13)0.0311 (14)0.0208 (12)0.0054 (10)0.0019 (10)0.0086 (11)
N30.0203 (12)0.0307 (13)0.0196 (12)0.0037 (10)0.0018 (10)0.0088 (10)
C10.0371 (18)0.0299 (17)0.0264 (16)0.0033 (14)0.0077 (14)0.0094 (13)
C20.043 (2)0.0282 (16)0.0235 (16)0.0093 (14)0.0060 (14)0.0045 (13)
C30.043 (2)0.0338 (17)0.0197 (15)0.0132 (15)0.0029 (14)0.0100 (13)
C40.0326 (17)0.0341 (17)0.0258 (16)0.0071 (14)0.0014 (13)0.0153 (14)
C50.0341 (17)0.0289 (16)0.0192 (14)0.0075 (13)0.0055 (12)0.0107 (12)
C60.0307 (16)0.0304 (16)0.0188 (14)0.0069 (13)0.0023 (12)0.0120 (12)
C70.0307 (17)0.0334 (17)0.0248 (16)0.0082 (13)0.0006 (13)0.0122 (13)
C80.0311 (17)0.0384 (18)0.0293 (16)0.0005 (14)0.0070 (13)0.0200 (14)
C90.0348 (18)0.0301 (16)0.0271 (16)0.0024 (14)0.0057 (14)0.0125 (13)
C100.0310 (17)0.0276 (16)0.0241 (15)0.0063 (13)0.0021 (13)0.0099 (13)
C110.051 (2)0.0370 (19)0.0270 (17)0.0181 (17)0.0017 (16)0.0083 (15)
C120.0327 (19)0.048 (2)0.045 (2)0.0002 (16)0.0086 (16)0.0181 (18)
C130.0263 (16)0.0268 (15)0.0248 (15)0.0061 (12)0.0012 (12)0.0076 (13)
C140.0266 (16)0.0314 (17)0.0303 (16)0.0056 (13)0.0029 (13)0.0142 (14)
C150.0262 (16)0.0322 (17)0.0306 (17)0.0024 (13)0.0085 (13)0.0156 (14)
C160.0269 (16)0.0305 (16)0.0221 (15)0.0023 (13)0.0050 (12)0.0105 (13)
C170.0211 (15)0.0262 (15)0.0224 (15)0.0007 (12)0.0041 (12)0.0094 (12)
C180.0211 (14)0.0243 (15)0.0225 (14)0.0020 (11)0.0043 (12)0.0093 (12)
C190.0285 (16)0.0271 (15)0.0221 (15)0.0012 (12)0.0040 (12)0.0077 (12)
C200.0245 (15)0.0247 (15)0.0284 (16)0.0006 (12)0.0021 (13)0.0078 (13)
C210.0254 (16)0.0291 (16)0.0347 (18)0.0055 (13)0.0035 (13)0.0089 (14)
C220.0266 (16)0.0340 (17)0.0300 (17)0.0069 (13)0.0062 (13)0.0135 (14)
C230.045 (2)0.043 (2)0.0341 (19)0.0044 (16)0.0155 (16)0.0176 (16)
C240.041 (2)0.0316 (18)0.0310 (18)0.0087 (15)0.0018 (15)0.0037 (15)
Cl20.0400 (5)0.0330 (5)0.0766 (7)0.0011 (4)0.0211 (5)0.0208 (5)
O1S0.0405 (15)0.0630 (18)0.0399 (15)0.0082 (13)0.0101 (12)0.0009 (13)
O1W0.0354 (14)0.0557 (17)0.0618 (18)0.0113 (12)0.0108 (13)0.0195 (14)
C1S0.055 (3)0.048 (2)0.048 (2)0.004 (2)0.022 (2)0.0080 (19)
C2S0.058 (3)0.102 (4)0.040 (2)0.012 (3)0.010 (2)0.012 (3)
Geometric parameters (Å, º) top
V1—O11.643 (2)C12—H12B0.9800
V1—N42.112 (3)C12—H12C0.9800
V1—N12.122 (3)C13—C141.377 (5)
V1—N32.126 (3)C13—H13A0.9500
V1—N22.278 (3)C14—C151.392 (5)
V1—Cl12.3259 (10)C14—H14A0.9500
N1—C11.349 (4)C15—C161.388 (5)
N1—C51.355 (4)C15—C231.508 (4)
N2—C101.343 (4)C16—C171.387 (4)
N2—C61.351 (4)C16—H16A0.9500
N4—C221.339 (4)C17—C181.474 (4)
N4—C181.362 (4)C18—C191.384 (4)
N3—C131.334 (4)C19—C201.387 (4)
N3—C171.360 (4)C19—H19A0.9500
C1—C21.381 (5)C20—C211.385 (5)
C1—H1B0.9500C20—C241.499 (4)
C2—C31.392 (5)C21—C221.384 (5)
C2—H2A0.9500C21—H21A0.9500
C3—C41.393 (5)C22—H22A0.9500
C3—C111.509 (4)C23—H23A0.9800
C4—C51.385 (4)C23—H23B0.9800
C4—H4A0.9500C23—H23C0.9800
C5—C61.480 (4)C24—H24A0.9800
C6—C71.392 (5)C24—H24B0.9800
C7—C81.384 (5)C24—H24C0.9800
C7—H7A0.9500O1S—C1S1.408 (5)
C8—C91.388 (5)O1S—H1S0.9310
C8—C121.508 (5)O1W—H1W0.8444
C9—C101.382 (5)O1W—H2W0.9188
C9—H9A0.9500C1S—C2S1.493 (6)
C10—H10A0.9500C1S—H1SA0.9900
C11—H11A0.9800C1S—H1SB0.9900
C11—H11B0.9800C2S—H2SA0.9800
C11—H11C0.9800C2S—H2SB0.9800
C12—H12A0.9800C2S—H2SC0.9800
O1—V1—N4102.71 (10)C8—C12—H12A109.5
O1—V1—N194.54 (11)C8—C12—H12B109.5
N4—V1—N1160.77 (11)H12A—C12—H12B109.5
O1—V1—N394.03 (11)C8—C12—H12C109.5
N4—V1—N377.27 (10)H12A—C12—H12C109.5
N1—V1—N393.27 (10)H12B—C12—H12C109.5
O1—V1—N2165.96 (10)N3—C13—C14122.8 (3)
N4—V1—N288.49 (10)N3—C13—H13A118.6
N1—V1—N273.27 (10)C14—C13—H13A118.6
N3—V1—N280.04 (9)C13—C14—C15119.8 (3)
O1—V1—Cl198.86 (8)C13—C14—H14A120.1
N4—V1—Cl192.74 (8)C15—C14—H14A120.1
N1—V1—Cl192.94 (7)C16—C15—C14117.4 (3)
N3—V1—Cl1165.19 (8)C16—C15—C23121.8 (3)
N2—V1—Cl188.91 (7)C14—C15—C23120.8 (3)
C1—N1—C5118.0 (3)C17—C16—C15120.3 (3)
C1—N1—V1121.3 (2)C17—C16—H16A119.8
C5—N1—V1120.6 (2)C15—C16—H16A119.8
C10—N2—C6117.4 (3)N3—C17—C16121.2 (3)
C10—N2—V1126.8 (2)N3—C17—C18115.4 (3)
C6—N2—V1115.8 (2)C16—C17—C18123.4 (3)
C22—N4—C18118.1 (3)N4—C18—C19121.2 (3)
C22—N4—V1125.9 (2)N4—C18—C17115.5 (3)
C18—N4—V1115.9 (2)C19—C18—C17123.3 (3)
C13—N3—C17118.5 (3)C18—C19—C20120.5 (3)
C13—N3—V1125.8 (2)C18—C19—H19A119.8
C17—N3—V1115.40 (19)C20—C19—H19A119.8
N1—C1—C2123.4 (3)C21—C20—C19117.9 (3)
N1—C1—H1B118.3C21—C20—C24122.0 (3)
C2—C1—H1B118.3C19—C20—C24120.1 (3)
C1—C2—C3118.8 (3)C22—C21—C20119.3 (3)
C1—C2—H2A120.6C22—C21—H21A120.4
C3—C2—H2A120.6C20—C21—H21A120.4
C2—C3—C4117.9 (3)N4—C22—C21123.0 (3)
C2—C3—C11121.2 (3)N4—C22—H22A118.5
C4—C3—C11121.0 (3)C21—C22—H22A118.5
C5—C4—C3120.5 (3)C15—C23—H23A109.5
C5—C4—H4A119.7C15—C23—H23B109.5
C3—C4—H4A119.7H23A—C23—H23B109.5
N1—C5—C4121.3 (3)C15—C23—H23C109.5
N1—C5—C6115.5 (3)H23A—C23—H23C109.5
C4—C5—C6123.2 (3)H23B—C23—H23C109.5
N2—C6—C7122.1 (3)C20—C24—H24A109.5
N2—C6—C5114.7 (3)C20—C24—H24B109.5
C7—C6—C5123.2 (3)H24A—C24—H24B109.5
C8—C7—C6120.1 (3)C20—C24—H24C109.5
C8—C7—H7A119.9H24A—C24—H24C109.5
C6—C7—H7A119.9H24B—C24—H24C109.5
C7—C8—C9117.6 (3)C1S—O1S—H1S99.6
C7—C8—C12121.7 (3)H1W—O1W—H2W130.3
C9—C8—C12120.8 (3)O1S—C1S—C2S112.2 (4)
C10—C9—C8119.4 (3)O1S—C1S—H1SA109.2
C10—C9—H9A120.3C2S—C1S—H1SA109.2
C8—C9—H9A120.3O1S—C1S—H1SB109.2
N2—C10—C9123.4 (3)C2S—C1S—H1SB109.2
N2—C10—H10A118.3H1SA—C1S—H1SB107.9
C9—C10—H10A118.3C1S—C2S—H2SA109.5
C3—C11—H11A109.5C1S—C2S—H2SB109.5
C3—C11—H11B109.5H2SA—C2S—H2SB109.5
H11A—C11—H11B109.5C1S—C2S—H2SC109.5
C3—C11—H11C109.5H2SA—C2S—H2SC109.5
H11A—C11—H11C109.5H2SB—C2S—H2SC109.5
H11B—C11—H11C109.5
O1—V1—N1—C18.2 (3)V1—N1—C5—C62.2 (3)
N4—V1—N1—C1162.1 (3)C3—C4—C5—N11.1 (5)
N3—V1—N1—C1102.5 (2)C3—C4—C5—C6178.7 (3)
N2—V1—N1—C1178.9 (3)C10—N2—C6—C70.9 (4)
Cl1—V1—N1—C191.0 (2)V1—N2—C6—C7175.3 (2)
O1—V1—N1—C5173.1 (2)C10—N2—C6—C5180.0 (3)
N4—V1—N1—C519.2 (4)V1—N2—C6—C53.8 (3)
N3—V1—N1—C578.8 (2)N1—C5—C6—N24.0 (4)
N2—V1—N1—C50.2 (2)C4—C5—C6—N2176.2 (3)
Cl1—V1—N1—C587.8 (2)N1—C5—C6—C7175.2 (3)
O1—V1—N2—C10147.3 (4)C4—C5—C6—C74.7 (5)
N4—V1—N2—C104.0 (3)N2—C6—C7—C80.5 (5)
N1—V1—N2—C10177.8 (3)C5—C6—C7—C8179.6 (3)
N3—V1—N2—C1081.3 (3)C6—C7—C8—C90.0 (5)
Cl1—V1—N2—C1088.8 (2)C6—C7—C8—C12179.9 (3)
O1—V1—N2—C628.5 (5)C7—C8—C9—C100.1 (5)
N4—V1—N2—C6171.8 (2)C12—C8—C9—C10179.8 (3)
N1—V1—N2—C62.1 (2)C6—N2—C10—C90.7 (4)
N3—V1—N2—C694.4 (2)V1—N2—C10—C9175.0 (2)
Cl1—V1—N2—C695.5 (2)C8—C9—C10—N20.3 (5)
O1—V1—N4—C2290.6 (3)C17—N3—C13—C142.0 (5)
N1—V1—N4—C22116.2 (3)V1—N3—C13—C14171.4 (2)
N3—V1—N4—C22178.1 (3)N3—C13—C14—C150.0 (5)
N2—V1—N4—C2298.0 (3)C13—C14—C15—C162.2 (5)
Cl1—V1—N4—C229.1 (3)C13—C14—C15—C23177.7 (3)
O1—V1—N4—C1886.5 (2)C14—C15—C16—C172.3 (5)
N1—V1—N4—C1866.7 (4)C23—C15—C16—C17177.6 (3)
N3—V1—N4—C184.8 (2)C13—N3—C17—C161.8 (4)
N2—V1—N4—C1884.9 (2)V1—N3—C17—C16172.3 (2)
Cl1—V1—N4—C18173.8 (2)C13—N3—C17—C18178.8 (3)
O1—V1—N3—C1377.9 (3)V1—N3—C17—C187.1 (3)
N4—V1—N3—C13180.0 (3)C15—C16—C17—N30.4 (5)
N1—V1—N3—C1316.9 (3)C15—C16—C17—C18179.0 (3)
N2—V1—N3—C1389.3 (3)C22—N4—C18—C191.1 (4)
Cl1—V1—N3—C13131.5 (3)V1—N4—C18—C19178.4 (2)
O1—V1—N3—C1795.7 (2)C22—N4—C18—C17179.9 (3)
N4—V1—N3—C176.5 (2)V1—N4—C18—C172.6 (3)
N1—V1—N3—C17169.5 (2)N3—C17—C18—N43.0 (4)
N2—V1—N3—C1797.2 (2)C16—C17—C18—N4176.4 (3)
Cl1—V1—N3—C1754.9 (4)N3—C17—C18—C19175.9 (3)
C5—N1—C1—C20.4 (5)C16—C17—C18—C194.7 (5)
V1—N1—C1—C2179.1 (2)N4—C18—C19—C201.1 (5)
N1—C1—C2—C31.2 (5)C17—C18—C19—C20179.9 (3)
C1—C2—C3—C40.9 (5)C18—C19—C20—C210.3 (5)
C1—C2—C3—C11179.9 (3)C18—C19—C20—C24179.7 (3)
C2—C3—C4—C50.3 (5)C19—C20—C21—C220.4 (5)
C11—C3—C4—C5178.9 (3)C24—C20—C21—C22179.1 (3)
C1—N1—C5—C40.8 (4)C18—N4—C22—C210.4 (5)
V1—N1—C5—C4177.9 (2)V1—N4—C22—C21177.5 (2)
C1—N1—C5—C6179.0 (3)C20—C21—C22—N40.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···Cl20.932.243.128 (3)159
O1W—H1W···Cl2i0.842.453.221 (3)152
O1W—H2W···Cl2ii0.922.373.284 (3)171
C1—H1B···O10.952.512.999 (4)112
C2—H2A···O1Siii0.952.413.301 (4)155
C4—H4A···Cl1iv0.952.763.670 (4)160
C7—H7A···Cl1iv0.952.773.626 (3)151
C9—H9A···Cl2ii0.952.633.561 (4)165
C13—H13A···O1Siv0.952.593.284 (4)130
C14—H14A···Cl2iv0.952.623.558 (3)170
C19—H19A···O1v0.952.523.229 (4)132
C21—H21A···O1Wvi0.952.453.315 (5)151
C22—H22A···Cl10.952.643.262 (3)123
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+2; (vi) x, y, z+2.

Experimental details

Crystal data
Chemical formula[VClO(C12H12N2)2]Cl·C2H6O·H2O
Mr570.40
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.6955 (11), 10.9905 (12), 14.5739 (17)
α, β, γ (°)68.711 (2), 72.401 (2), 81.381 (2)
V3)1377.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.32 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
12257, 5363, 4398
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.144, 1.00
No. of reflections5363
No. of parameters330
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.09, 0.89

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···Cl20.932.243.128 (3)159
O1W—H1W···Cl2i0.842.453.221 (3)152
O1W—H2W···Cl2ii0.922.373.284 (3)171
C1—H1B···O10.952.512.999 (4)112
C2—H2A···O1Siii0.952.413.301 (4)155
C4—H4A···Cl1iv0.952.763.670 (4)160
C7—H7A···Cl1iv0.952.773.626 (3)151
C9—H9A···Cl2ii0.952.633.561 (4)165
C13—H13A···O1Siv0.952.593.284 (4)130
C14—H14A···Cl2iv0.952.623.558 (3)170
C19—H19A···O1v0.952.523.229 (4)132
C21—H21A···O1Wvi0.952.453.315 (5)151
C22—H22A···Cl10.952.643.262 (3)123
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+2; (vi) x, y, z+2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2011). Acta Cryst. E67, m1866–m1867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m1006–m1007.  CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m1189–m1190.  CSD CrossRef IUCr Journals Google Scholar
First citationTriantafillou, G. D., Tolis, E. I., Terzis, A., Deligiannakis, Y., Raptopoulou, C. P., Sigalas, M. P. & Kabanos, T. A. (2004). Inorg. Chem. 43, 79–91.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds