organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Meth­­oxy­phen­yl)-1,3,5-triazine-2,4-di­amine

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Angalamman College of Engineering and Technology, Siruganur, Tiruchirappalli 621 105, Tamil Nadu, India, and cDepartment of Chemistry, St. Joseph's College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: arazaki@usm.my

(Received 29 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title compound, C10H11N5O, the triazine ring forms a dihedral angle of 10.37 (4)° with the benzene ring. In the crystal, adjacent mol­ecules are linked by a pair of N—H⋯N hydrogen bonds, forming an inversion dimer with an R22(8) ring motif. The dimers are further connected via N—H⋯O and N—H⋯N hydrogen bonds, resulting in a three-dimensional network.

Related literature

For the biological activity of triazine derivatives, see: Bork et al. (2003[Bork, J. T., Lee, J. W., Khersonsky, S. M., Moon, H. S. & Chang, Y. T. (2003). Org. Lett. 5, 117-120.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N5O

  • Mr = 217.24

  • Monoclinic, P 21 /c

  • a = 7.4340 (2) Å

  • b = 10.0355 (3) Å

  • c = 14.6803 (4) Å

  • β = 114.191 (1)°

  • V = 999.03 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.73 × 0.49 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.985

  • 16310 measured reflections

  • 3611 independent reflections

  • 3112 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.07

  • 3611 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N5i 0.878 (14) 2.258 (14) 3.1291 (11) 172.1 (12)
N4—H4A⋯N3ii 0.894 (16) 2.077 (16) 2.9708 (12) 177.4 (14)
N4—H4B⋯O1iii 0.879 (16) 2.189 (15) 3.0196 (11) 157.3 (14)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazine derivatives show antitumour activity, as well as a broad range of biological activities, such as anti-angiogenesis and antimicrobial effects (Bork et al., 2003). Herein, we report the crystal structure determination of the title compound, (I).

The asymmetric unit of the title compound is shown in Fig. 1. The essentially planar triazine ring [N1/C2/N3/C4/N5/C6, maximum deviation of 0.036 (1) Å at atom C2] forms a dihedral angle of 10.39 (4)° with the benzene ring (C7–C12). In the crystal structure, molecules are linked by a pair of N4—H4A···N3ii hydrogen bonds (symmetry code in Table 1), forming an R22(8) (Bernstein et al., 1995) ring motif and an inversion dimer (Fig. 2). The dimers are further connected via N4—H4B···O1iii and N2—H2B···N5i hydrogen bonds (symmetry codes in Table 1), resulting into a three-dimensional network.

Related literature top

For the biological activity of triazine derivatives, see: Bork et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solution (20 ml) of 2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine (32 mg Aldrich) was warmed for a half an hour over a water bath. The resulting solution was allowed to cool slowly at room temperature. After a few days colourless plate-like crystals were obtained.

Refinement top

N-bound H atoms were located in a difference Fourier maps and refined freely [refined N—H distances 0.896 (15), 0.877 (14), 0.896 (15) and 0.878 (15) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H)=1.2Ueq(C) and 1.5Ueq(methyl C). A rotating-group model was used for the methyl group.

Structure description top

Triazine derivatives show antitumour activity, as well as a broad range of biological activities, such as anti-angiogenesis and antimicrobial effects (Bork et al., 2003). Herein, we report the crystal structure determination of the title compound, (I).

The asymmetric unit of the title compound is shown in Fig. 1. The essentially planar triazine ring [N1/C2/N3/C4/N5/C6, maximum deviation of 0.036 (1) Å at atom C2] forms a dihedral angle of 10.39 (4)° with the benzene ring (C7–C12). In the crystal structure, molecules are linked by a pair of N4—H4A···N3ii hydrogen bonds (symmetry code in Table 1), forming an R22(8) (Bernstein et al., 1995) ring motif and an inversion dimer (Fig. 2). The dimers are further connected via N4—H4B···O1iii and N2—H2B···N5i hydrogen bonds (symmetry codes in Table 1), resulting into a three-dimensional network.

For the biological activity of triazine derivatives, see: Bork et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
6-(4-Methoxyphenyl)-1,3,5-triazine-2,4-diamine top
Crystal data top
C10H11N5OF(000) = 456
Mr = 217.24Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7910 reflections
a = 7.4340 (2) Åθ = 2.5–32.5°
b = 10.0355 (3) ŵ = 0.10 mm1
c = 14.6803 (4) ÅT = 100 K
β = 114.191 (1)°Plate, colourless
V = 999.03 (5) Å30.73 × 0.49 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3611 independent reflections
Radiation source: fine-focus sealed tube3112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.930, Tmax = 0.985k = 1514
16310 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2052P]
where P = (Fo2 + 2Fc2)/3
3611 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H11N5OV = 999.03 (5) Å3
Mr = 217.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4340 (2) ŵ = 0.10 mm1
b = 10.0355 (3) ÅT = 100 K
c = 14.6803 (4) Å0.73 × 0.49 × 0.15 mm
β = 114.191 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3611 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3112 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.985Rint = 0.024
16310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
3611 reflectionsΔρmin = 0.26 e Å3
162 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35597 (9)0.64750 (7)0.95775 (5)0.01650 (14)
N10.89236 (10)0.73352 (7)0.71745 (5)0.01370 (14)
N21.14046 (11)0.80754 (8)0.67477 (6)0.01588 (15)
N30.98420 (10)0.61218 (7)0.60228 (5)0.01364 (14)
N40.81934 (12)0.41721 (8)0.53671 (6)0.01771 (16)
N50.74625 (11)0.52210 (7)0.65619 (5)0.01434 (15)
C21.00276 (12)0.71420 (8)0.66483 (6)0.01287 (15)
C40.85102 (12)0.51935 (8)0.59951 (6)0.01342 (15)
C60.76980 (11)0.63268 (8)0.71082 (6)0.01251 (15)
C70.65370 (12)0.63948 (8)0.77219 (6)0.01286 (15)
C80.50541 (12)0.54629 (9)0.75799 (6)0.01468 (16)
H8A0.47490.48240.70610.018*
C90.40092 (12)0.54448 (8)0.81785 (6)0.01421 (16)
H9A0.30150.47960.80780.017*
C100.44520 (12)0.63999 (8)0.89293 (6)0.01308 (15)
C110.59087 (12)0.73581 (9)0.90702 (6)0.01452 (16)
H11A0.61820.80160.95750.017*
C120.69527 (12)0.73512 (8)0.84777 (6)0.01394 (16)
H12A0.79540.79960.85830.017*
C130.19727 (13)0.55633 (10)0.94259 (7)0.01802 (17)
H13A0.14880.56970.99470.027*
H13B0.24480.46460.94570.027*
H13C0.09000.57240.87700.027*
H2A1.236 (2)0.7853 (15)0.6551 (11)0.031 (4)*
H2B1.1747 (19)0.8611 (14)0.7264 (10)0.023 (3)*
H4A0.882 (2)0.4077 (15)0.4965 (11)0.029 (3)*
H4B0.739 (2)0.3525 (15)0.5360 (11)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0177 (3)0.0169 (3)0.0189 (3)0.0022 (2)0.0116 (2)0.0023 (2)
N10.0149 (3)0.0116 (3)0.0165 (3)0.0003 (2)0.0083 (2)0.0002 (2)
N20.0171 (3)0.0136 (3)0.0197 (3)0.0030 (3)0.0103 (3)0.0022 (3)
N30.0151 (3)0.0123 (3)0.0149 (3)0.0006 (2)0.0075 (2)0.0002 (2)
N40.0216 (3)0.0152 (3)0.0216 (3)0.0053 (3)0.0143 (3)0.0051 (3)
N50.0163 (3)0.0121 (3)0.0174 (3)0.0008 (3)0.0098 (3)0.0011 (2)
C20.0131 (3)0.0114 (3)0.0139 (3)0.0015 (3)0.0054 (3)0.0021 (3)
C40.0146 (3)0.0120 (3)0.0143 (3)0.0013 (3)0.0064 (3)0.0008 (3)
C60.0128 (3)0.0111 (3)0.0137 (3)0.0014 (3)0.0055 (3)0.0013 (3)
C70.0134 (3)0.0108 (3)0.0154 (3)0.0011 (3)0.0070 (3)0.0002 (3)
C80.0156 (3)0.0128 (3)0.0170 (3)0.0004 (3)0.0081 (3)0.0025 (3)
C90.0137 (3)0.0122 (3)0.0177 (3)0.0007 (3)0.0074 (3)0.0007 (3)
C100.0130 (3)0.0128 (3)0.0145 (3)0.0020 (3)0.0066 (3)0.0012 (3)
C110.0159 (3)0.0133 (4)0.0154 (3)0.0009 (3)0.0074 (3)0.0025 (3)
C120.0139 (3)0.0119 (3)0.0168 (3)0.0003 (3)0.0069 (3)0.0004 (3)
C130.0157 (3)0.0206 (4)0.0199 (4)0.0016 (3)0.0095 (3)0.0022 (3)
Geometric parameters (Å, º) top
O1—C101.3669 (10)C6—C71.4826 (11)
O1—C131.4364 (11)C7—C81.3946 (12)
N1—C61.3384 (11)C7—C121.4025 (12)
N1—C21.3517 (10)C8—C91.3911 (11)
N2—C21.3507 (11)C8—H8A0.9500
N2—H2A0.896 (15)C9—C101.3945 (12)
N2—H2B0.877 (14)C9—H9A0.9500
N3—C21.3441 (11)C10—C111.3988 (12)
N3—C41.3479 (11)C11—C121.3828 (11)
N4—C41.3335 (11)C11—H11A0.9500
N4—H4A0.896 (15)C12—H12A0.9500
N4—H4B0.878 (15)C13—H13A0.9800
N5—C61.3380 (11)C13—H13B0.9800
N5—C41.3530 (10)C13—H13C0.9800
C10—O1—C13117.33 (7)C9—C8—C7121.75 (8)
C6—N1—C2113.87 (7)C9—C8—H8A119.1
C2—N2—H2A117.2 (10)C7—C8—H8A119.1
C2—N2—H2B117.2 (9)C8—C9—C10118.57 (8)
H2A—N2—H2B116.3 (13)C8—C9—H9A120.7
C2—N3—C4114.56 (7)C10—C9—H9A120.7
C4—N4—H4A123.0 (10)O1—C10—C9124.29 (7)
C4—N4—H4B120.3 (9)O1—C10—C11115.23 (7)
H4A—N4—H4B116.6 (13)C9—C10—C11120.47 (7)
C6—N5—C4114.75 (7)C12—C11—C10120.24 (8)
N3—C2—N2117.59 (7)C12—C11—H11A119.9
N3—C2—N1125.68 (7)C10—C11—H11A119.9
N2—C2—N1116.72 (7)C11—C12—C7120.17 (8)
N4—C4—N3118.14 (7)C11—C12—H12A119.9
N4—C4—N5117.24 (7)C7—C12—H12A119.9
N3—C4—N5124.62 (8)O1—C13—H13A109.5
N5—C6—N1126.06 (7)O1—C13—H13B109.5
N5—C6—C7115.89 (7)H13A—C13—H13B109.5
N1—C6—C7118.00 (7)O1—C13—H13C109.5
C8—C7—C12118.78 (7)H13A—C13—H13C109.5
C8—C7—C6119.98 (7)H13B—C13—H13C109.5
C12—C7—C6121.18 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.878 (14)2.258 (14)3.1291 (11)172.1 (12)
N4—H4A···N3ii0.894 (16)2.077 (16)2.9708 (12)177.4 (14)
N4—H4B···O1iii0.879 (16)2.189 (15)3.0196 (11)157.3 (14)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H11N5O
Mr217.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.4340 (2), 10.0355 (3), 14.6803 (4)
β (°) 114.191 (1)
V3)999.03 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.73 × 0.49 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.930, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16310, 3611, 3112
Rint0.024
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.07
No. of reflections3611
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.878 (14)2.258 (14)3.1291 (11)172.1 (12)
N4—H4A···N3ii0.894 (16)2.077 (16)2.9708 (12)177.4 (14)
N4—H4B···O1iii0.879 (16)2.189 (15)3.0196 (11)157.3 (14)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for the TWAS–USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBork, J. T., Lee, J. W., Khersonsky, S. M., Moon, H. S. & Chang, Y. T. (2003). Org. Lett. 5, 117–120.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds