organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-N-{4-oxo-2-[4-(tri­fluoro­meth­yl)phen­yl]-1,3-thia­zolidin-3-yl}-3-phenyl-1H-indole-2-carboxamide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 11 September 2012; accepted 14 September 2012; online 22 September 2012)

In the title compound, C25H17ClF3N3O2S, the five-membered 1,3-thia­zolidine ring adopts a twist conformation. The three F atoms of the CF3 group are disordered over two sets of sites with refined occupancies of 0.542 (18) and 0.458 (18). In the nine-membered 1H-indoline ring system, the 1H-pyrrole ring forms a dihedral angle of 4.7 (2)° with the benzene ring, while it is twisted at an angle of 46.5 (2)° with respect to the attached phenyl ring. The dihedral angle between the phenyl and trifluoro­methyl-substituted benzene rings is 56.0 (2)°. In the crystal, N—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network. In addition, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions are observed.

Related literature

For medicinal applications of indole derivatives, see: Beale (2011[Beale, J. M. (2011). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed., edited by J. M. Beale & J. H. Block, pp. 342-352. Philadelphia: Lippincott Williams and Wilkins.]); Brancale & Silvestri (2007[Brancale, A. & Silvestri, R. (2007). Med. Res. Rev. 27, 209-238.]); Cihan-Ustundag & Capan (2012[Cihan-Ustundag, G. & Capan, G. (2012). Mol Divers. doi:10.1007/s11030-012-9385-y.]); Oudard et al. (2011[Oudard, S., Beuselinck, B., Decoene, J. & Albers, P. (2011). Cancer Treat. Rev. 37, 178-184.]); Verma & Saraf (2008[Verma, A. & Saraf, K. S. (2008). Eur. J. Med. Chem. 43, 897-905.]). For the definition of ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Akkurt et al. (2010[Akkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1691-o1692.], 2011a[Akkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011a). Acta Cryst. E67, o293-o294.],b[Akkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011b). Acta Cryst. E67, o745-o746.],c[Akkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011c). Acta Cryst. E67, o914-o915.]). For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H17ClF3N3O2S

  • Mr = 515.94

  • Tetragonal, I 41 /a

  • a = 22.9020 (6) Å

  • c = 18.3260 (6) Å

  • V = 9612.0 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.57 × 0.43 × 0.29 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.849, Tmax = 0.919

  • 71781 measured reflections

  • 4968 independent reflections

  • 3054 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.210

  • S = 1.05

  • 4968 reflections

  • 345 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.08 2.864 (4) 151
N2—H2A⋯O2ii 0.86 2.34 2.851 (4) 118
C18—H18⋯O2ii 0.98 2.53 3.145 (5) 121
C24—H24⋯Cg1iii 0.93 2.77 3.438 (5) 129
C17—H17BCg2iv 0.97 2.95 3.799 (5) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [y-{\script{1\over 4}}, -x+{\script{5\over 4}}, -z+{\script{5\over 4}}]; (iii) [-y+{\script{3\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}]; (iv) [-y+{\script{5\over 4}}, x+{\script{1\over 4}}, -z+{\script{5\over 4}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The indole ring system is one of the most encountered heterocyles in natural and synthetic drug compounds (Brancale & Silvestri, 2007). Several indole derivatives, such as sunitinib as tyrosine kinase inhibitor (Oudard et al., 2011) or delavirdine as nonnucleoside reverse transcriptase inhibitor (Beale, 2011), are in clinical use. Here, we aimed to combine this basic scaffold with 4-thiazolidinones, which have been shown to have anticancer (Cihan-Ustundag & Capan, 2012), antifungal, antibacterial and antiviral properties (Verma & Saraf, 2008), to obtain leads toward the design of anticancer compounds.

The molecular structure of the title compound is shown in Fig. 1. The 1,3-thiazolidine ring (S1/N3/C16–C18) has a twist conformation as indicated by the puckering parameters (Cremer & Pople, 1975) of Q(2) = 0.354 (4) Å, φ(2) = 342.0 (6)°. In the nine-membered 1H-indoline ring system (N1/C1–C8), the 1H-pyrrole ring (N1C1/C6–C8) makes a dihedral angle of 4.7 (2)° with the benzene ring (C1–C6), while it is twisted an angle of 46.5 (2)° with respect to the attached phenyl ring (C9–C14). The dihedral angle between the C9–C14 phenyl and C19–C24 benzene rings which are attached to the H-pyrrole and 1,3-thiazolidine rings, respectively, is 56.0 (2)°.

All bond lengths and bond angles in (I) are within normal ranges (Allen et al., 1987) and are comparable to those reported for the related structures (Akkurt et al., 2010, 2011a,b,c). The C7—C15—N2—N3, N1—C7—C15—O1 and O1—C15—N2—N3 torsion angles are 176.4 (3), -19.5 (5) and -2.6 (5)°, respectively.

In the crystal, N—H···O and weak C—H···O hydrogen bonds, and C—H···π interactions stabilize the crystal structure, forming a three-dimensional network (Table 1).

Related literature top

For medicinal applications of indole derivatives, see: Beale (2011); Brancale & Silvestri (2007); Cihan-Ustundag & Capan (2012); Oudard et al. (2011); Verma & Saraf (2008). For the definition of ring-puckering parameters, see: Cremer & Pople (1975). For related structures, see: Akkurt et al. (2010, 2011a,b,c). For standard values of bond lengths, see: Allen et al. (1987).

Experimental top

0.002 mol of N'-(4-(trifluoromethyl)benzylidene-5-chloro-3-phenyl-1H-indole-2-carbohydrazide was reacted with 3 ml of mercaptoacetic acid in anhydrous benzene for 6 h using a Dean–Stark trap. Excess benzene was removed under reduced pressure. The residue was triturated with saturated sodium bicarbonate solution. The separated solid was filtered, washed with water and crystallized from ethanol. Orange crystalline solid. m.p. 510 K. IR (KBr) ν 3303 (indol N—H and amide N—H); 1717 (CO),1655, (CO) cm-1; Analysis calculated for C25H17ClF3N3O2S: C: 58.20; H: 3.32; N: 8.14%. Found: C: 57.18; H: 3.59; N: 7.87%.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine) H atoms, respectively, and refined as riding with Uiso(H) = 1.2 Ueq(C, N). The three fluorine atoms of the CF3 group are disordered over two sets of sites in a 0.542 (18):0.458 (18) ratio. The carbon atom of the CF3 group was refined as two atoms (C25 and C25') sharing the same site [their xyz and Uij parameters were equated by dummy atom constraints using the EXYZ and EADP commands]. Thirteen poorly fitted reflections (-4 6 0), (-2 4 2), (2 8 2), (-3 6 1), (0 6 2), (2 9 5), (-1 3 6), (1 1 2), (-1 2 3), (1 2 3), (2 2 2), (-7 10 7) and (3 4 3) were omitted from the refinement. These reflections have Fobs much greater than Fcalc and this might be attributed to the poor quality of the available crystal and the presence of disorder in the structure.

Structure description top

The indole ring system is one of the most encountered heterocyles in natural and synthetic drug compounds (Brancale & Silvestri, 2007). Several indole derivatives, such as sunitinib as tyrosine kinase inhibitor (Oudard et al., 2011) or delavirdine as nonnucleoside reverse transcriptase inhibitor (Beale, 2011), are in clinical use. Here, we aimed to combine this basic scaffold with 4-thiazolidinones, which have been shown to have anticancer (Cihan-Ustundag & Capan, 2012), antifungal, antibacterial and antiviral properties (Verma & Saraf, 2008), to obtain leads toward the design of anticancer compounds.

The molecular structure of the title compound is shown in Fig. 1. The 1,3-thiazolidine ring (S1/N3/C16–C18) has a twist conformation as indicated by the puckering parameters (Cremer & Pople, 1975) of Q(2) = 0.354 (4) Å, φ(2) = 342.0 (6)°. In the nine-membered 1H-indoline ring system (N1/C1–C8), the 1H-pyrrole ring (N1C1/C6–C8) makes a dihedral angle of 4.7 (2)° with the benzene ring (C1–C6), while it is twisted an angle of 46.5 (2)° with respect to the attached phenyl ring (C9–C14). The dihedral angle between the C9–C14 phenyl and C19–C24 benzene rings which are attached to the H-pyrrole and 1,3-thiazolidine rings, respectively, is 56.0 (2)°.

All bond lengths and bond angles in (I) are within normal ranges (Allen et al., 1987) and are comparable to those reported for the related structures (Akkurt et al., 2010, 2011a,b,c). The C7—C15—N2—N3, N1—C7—C15—O1 and O1—C15—N2—N3 torsion angles are 176.4 (3), -19.5 (5) and -2.6 (5)°, respectively.

In the crystal, N—H···O and weak C—H···O hydrogen bonds, and C—H···π interactions stabilize the crystal structure, forming a three-dimensional network (Table 1).

For medicinal applications of indole derivatives, see: Beale (2011); Brancale & Silvestri (2007); Cihan-Ustundag & Capan (2012); Oudard et al. (2011); Verma & Saraf (2008). For the definition of ring-puckering parameters, see: Cremer & Pople (1975). For related structures, see: Akkurt et al. (2010, 2011a,b,c). For standard values of bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level. The disorder is not shown.
5-Chloro-N-{4-oxo-2-[4-(trifluoromethyl)phenyl]-1,3-thiazolidin-3-yl}-3-phenyl-1H-indole-2-carboxamide top
Crystal data top
C25H17ClF3N3O2SDx = 1.426 Mg m3
Mr = 515.94Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 45035 reflections
Hall symbol: -I 4adθ = 1.4–27.8°
a = 22.9020 (6) ŵ = 0.30 mm1
c = 18.3260 (6) ÅT = 296 K
V = 9612.0 (6) Å3Prism, orange
Z = 160.57 × 0.43 × 0.29 mm
F(000) = 4224
Data collection top
Stoe IPDS 2
diffractometer
4968 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3054 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.076
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.8°
ω scansh = 2828
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2828
Tmin = 0.849, Tmax = 0.919l = 2222
71781 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1132P)2]
where P = (Fo2 + 2Fc2)/3
4968 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.53 e Å3
14 restraintsΔρmin = 0.30 e Å3
Crystal data top
C25H17ClF3N3O2SZ = 16
Mr = 515.94Mo Kα radiation
Tetragonal, I41/aµ = 0.30 mm1
a = 22.9020 (6) ÅT = 296 K
c = 18.3260 (6) Å0.57 × 0.43 × 0.29 mm
V = 9612.0 (6) Å3
Data collection top
Stoe IPDS 2
diffractometer
4968 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3054 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.919Rint = 0.076
71781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07314 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
4968 reflectionsΔρmin = 0.30 e Å3
345 parameters
Special details top

Experimental. 1H-NMR (400 MHz) (DMSO d6/TMS) δ 3.80 (1H, d, J = 15.90 Hz, H5-thia.), 3.96 (1H, dd, J1 = 15.87 Hz, J2 = 1.71 Hz, H5-thia.), 5.97 (1H, s, H2-thia.), 7.19–7.21 (3H, m, 3-C6H5-ind.), 7.25–7.29 (3H, m, H6-ind, 3-C6H5-ind.) 7.43–7.51 (2H,m H4-, H7-ind.), 7.67 (2H, d, J = 8.23 Hz, 2-C6H4-(H2,6)-thia), 7.75 (2H, d, J = 8.31 Hz, 2-C6H4-(H3,5)-thia.), 10.19 (1H, s, CONH), 12.04 (1H, s, NH) p.p.m.; 13C-NMR (HMBC) (125 MHz) (DMSO-d6) δ 29.91 (C5-thia.), 61.66 (C2-thia.), 114.92 (C7-ind.), 119.24 (C3-ind.), 119.68 (C4-ind.) 125.13 (C6-ind.), 125.84 (C3a-ind), 126.25 (2-C6H4-(C3,5)-thia.), 127.18 (C5-ind.), 127.93 (C2-ind.), 128.92 (2-C6H4-(C2,6)-thia.), 133.06 (3-C6H5-(C1)-ind), 134.99 (C7a-ind), 144.17 (2-C6-H4-(C1)-thia.), 161.21 (CONH), 169.66 (CO) p.p.m.; APCI+ m/z (%) = 516.1/518.2 (MH+, 29.4/12.7), 79.5 (100).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.52469 (9)0.62509 (8)0.11058 (7)0.1214 (8)
S10.33741 (6)0.62264 (6)0.73456 (6)0.0809 (5)
O10.44994 (13)0.54850 (11)0.54646 (14)0.0633 (10)
O20.49070 (12)0.64975 (16)0.66104 (17)0.0816 (13)
N10.50355 (13)0.56361 (13)0.41587 (15)0.0493 (9)
N20.41564 (12)0.64048 (12)0.54712 (15)0.0455 (9)
N30.39991 (12)0.63564 (12)0.61935 (14)0.0439 (9)
C10.48360 (15)0.62222 (16)0.32162 (18)0.0495 (11)
C20.48633 (19)0.63894 (18)0.2484 (2)0.0623 (14)
C30.5236 (2)0.6087 (2)0.2038 (2)0.0733 (16)
C40.5597 (2)0.5641 (2)0.2289 (2)0.0763 (19)
C50.55736 (18)0.5467 (2)0.2994 (2)0.0647 (14)
C60.51797 (15)0.57519 (16)0.34551 (18)0.0481 (11)
C70.46139 (15)0.60221 (14)0.43855 (17)0.0439 (11)
C80.44742 (15)0.63943 (15)0.38228 (18)0.0464 (11)
C90.39990 (17)0.68331 (16)0.37637 (18)0.0512 (11)
C100.34426 (19)0.6712 (2)0.3996 (2)0.0657 (16)
C110.2991 (2)0.7108 (3)0.3882 (3)0.0867 (19)
C120.3093 (3)0.7615 (3)0.3509 (3)0.092 (2)
C130.3642 (3)0.7747 (2)0.3279 (2)0.087 (2)
C140.4097 (2)0.73647 (18)0.3411 (2)0.0683 (14)
C150.44188 (15)0.59419 (14)0.51464 (18)0.0446 (11)
C160.43981 (16)0.64471 (17)0.6722 (2)0.0523 (12)
C170.41203 (19)0.6458 (2)0.7458 (2)0.0737 (16)
C180.33692 (18)0.64343 (19)0.6371 (2)0.0647 (14)
C190.29649 (17)0.60608 (18)0.5938 (2)0.0587 (14)
C200.3035 (2)0.54741 (18)0.5819 (3)0.0733 (17)
C210.2629 (2)0.5169 (2)0.5429 (3)0.0863 (19)
C220.21510 (19)0.5420 (2)0.5160 (3)0.0747 (17)
C230.2074 (2)0.5992 (3)0.5246 (3)0.092 (2)
C240.2472 (2)0.6329 (2)0.5623 (3)0.0813 (18)
C250.1692 (3)0.5063 (3)0.4760 (4)0.111 (3)0.500
C25'0.1692 (3)0.5063 (3)0.4760 (4)0.111 (3)0.500
F10.1487 (8)0.5287 (4)0.4197 (9)0.197 (8)0.542 (18)
F20.1278 (6)0.4936 (8)0.5184 (9)0.252 (12)0.542 (18)
F30.1890 (4)0.4577 (4)0.4534 (5)0.108 (4)0.542 (18)
F1'0.1752 (7)0.5149 (15)0.4092 (6)0.37 (2)0.458 (18)
F2'0.1190 (6)0.5316 (11)0.4860 (11)0.227 (12)0.458 (18)
F3'0.1645 (14)0.4561 (7)0.494 (2)0.42 (2)0.458 (18)
H10.518500.536300.442200.0590*
H20.463700.669500.230600.0750*
H2A0.409000.672100.523200.0550*
H40.585700.546100.196900.0920*
H50.581200.516800.316600.0780*
H100.336600.636100.423400.0790*
H110.261900.702800.405900.1040*
H120.278700.787000.341200.1100*
H130.371100.809500.303300.1040*
H140.447300.746300.326200.0820*
H17A0.413400.684900.766000.0880*
H17B0.432400.619600.778700.0880*
H180.326000.684600.632000.0770*
H200.336100.528300.600400.0880*
H210.268900.477200.534900.1030*
H230.174500.616900.504700.1100*
H240.241600.673000.566900.0970*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1764 (17)0.1380 (14)0.0499 (6)0.0150 (11)0.0362 (8)0.0157 (7)
S10.0795 (8)0.1053 (10)0.0579 (6)0.0299 (7)0.0263 (5)0.0225 (6)
O10.091 (2)0.0421 (14)0.0567 (15)0.0209 (13)0.0195 (14)0.0083 (12)
O20.0434 (17)0.129 (3)0.0724 (19)0.0023 (17)0.0013 (14)0.0113 (18)
N10.0518 (17)0.0503 (17)0.0459 (15)0.0110 (14)0.0002 (13)0.0016 (13)
N20.0564 (17)0.0372 (15)0.0430 (14)0.0060 (13)0.0052 (13)0.0036 (12)
N30.0420 (16)0.0464 (16)0.0434 (15)0.0043 (12)0.0070 (12)0.0025 (12)
C10.047 (2)0.057 (2)0.0446 (18)0.0042 (17)0.0022 (15)0.0004 (16)
C20.075 (3)0.062 (2)0.050 (2)0.001 (2)0.0029 (19)0.0076 (18)
C30.090 (3)0.088 (3)0.042 (2)0.008 (3)0.017 (2)0.004 (2)
C40.072 (3)0.097 (4)0.060 (3)0.006 (3)0.021 (2)0.011 (2)
C50.059 (2)0.078 (3)0.057 (2)0.013 (2)0.0061 (19)0.007 (2)
C60.0431 (19)0.059 (2)0.0422 (17)0.0002 (16)0.0001 (14)0.0034 (16)
C70.049 (2)0.0433 (18)0.0395 (17)0.0042 (15)0.0011 (14)0.0007 (14)
C80.049 (2)0.048 (2)0.0423 (17)0.0019 (16)0.0036 (15)0.0008 (15)
C90.060 (2)0.055 (2)0.0385 (17)0.0102 (18)0.0020 (16)0.0012 (16)
C100.068 (3)0.072 (3)0.057 (2)0.014 (2)0.007 (2)0.007 (2)
C110.072 (3)0.110 (4)0.078 (3)0.034 (3)0.007 (2)0.009 (3)
C120.110 (4)0.097 (4)0.068 (3)0.057 (3)0.018 (3)0.005 (3)
C130.138 (5)0.062 (3)0.061 (3)0.038 (3)0.000 (3)0.014 (2)
C140.090 (3)0.059 (2)0.056 (2)0.017 (2)0.008 (2)0.0124 (19)
C150.0468 (19)0.0401 (19)0.0469 (18)0.0047 (15)0.0000 (15)0.0019 (15)
C160.045 (2)0.060 (2)0.052 (2)0.0065 (17)0.0041 (17)0.0046 (17)
C170.074 (3)0.094 (3)0.053 (2)0.003 (2)0.006 (2)0.013 (2)
C180.056 (2)0.059 (2)0.079 (3)0.0005 (19)0.010 (2)0.011 (2)
C190.053 (2)0.064 (3)0.059 (2)0.016 (2)0.0066 (18)0.0145 (18)
C200.062 (3)0.056 (3)0.102 (3)0.012 (2)0.022 (2)0.004 (2)
C210.071 (3)0.062 (3)0.126 (4)0.003 (2)0.016 (3)0.032 (3)
C220.058 (3)0.083 (3)0.083 (3)0.009 (2)0.009 (2)0.023 (2)
C230.061 (3)0.094 (4)0.120 (4)0.015 (3)0.034 (3)0.004 (3)
C240.071 (3)0.052 (2)0.121 (4)0.017 (2)0.006 (3)0.007 (3)
C250.085 (4)0.106 (5)0.141 (6)0.004 (4)0.020 (4)0.041 (5)
C25'0.085 (4)0.106 (5)0.141 (6)0.004 (4)0.020 (4)0.041 (5)
F10.231 (16)0.109 (7)0.252 (17)0.000 (6)0.205 (15)0.005 (7)
F20.110 (9)0.37 (3)0.275 (18)0.148 (12)0.098 (11)0.244 (19)
F30.098 (5)0.106 (7)0.120 (7)0.009 (4)0.037 (5)0.063 (5)
F1'0.112 (11)0.88 (7)0.105 (11)0.010 (19)0.014 (8)0.20 (2)
F2'0.070 (7)0.40 (3)0.210 (18)0.013 (12)0.056 (10)0.102 (18)
F3'0.54 (5)0.151 (18)0.57 (5)0.16 (2)0.42 (4)0.14 (3)
Geometric parameters (Å, º) top
Cl1—C31.749 (4)C12—C131.360 (9)
S1—C171.801 (5)C13—C141.382 (7)
S1—C181.849 (4)C16—C171.492 (5)
O1—C151.212 (4)C18—C191.490 (6)
O2—C161.189 (5)C19—C201.371 (6)
N1—C61.357 (4)C19—C241.409 (6)
N1—C71.374 (4)C20—C211.365 (7)
N2—N31.376 (4)C21—C221.331 (7)
N2—C151.356 (4)C22—C231.331 (8)
N3—C161.348 (5)C22—C251.520 (8)
N3—C181.490 (5)C22—C25'1.520 (8)
N1—H10.8600C23—C241.380 (7)
N2—H2A0.8600C2—H20.9300
C1—C21.397 (5)C4—H40.9300
C1—C61.404 (5)C5—H50.9300
C1—C81.441 (5)C10—H100.9300
C2—C31.370 (6)C11—H110.9300
C3—C41.392 (6)C12—H120.9300
C4—C51.353 (5)C13—H130.9300
C5—C61.398 (5)C14—H140.9300
C7—C81.376 (5)C17—H17A0.9700
C7—C151.476 (5)C17—H17B0.9700
C8—C91.485 (5)C18—H180.9800
C9—C101.372 (6)C20—H200.9300
C9—C141.397 (5)C21—H210.9300
C10—C111.391 (7)C23—H230.9300
C11—C121.368 (9)C24—H240.9300
C17—S1—C1892.32 (18)S1—C18—C19111.8 (3)
C6—N1—C7109.4 (3)C18—C19—C24117.8 (4)
N3—N2—C15118.4 (3)C20—C19—C24117.1 (4)
N2—N3—C16120.1 (3)C18—C19—C20125.1 (4)
N2—N3—C18117.0 (3)C19—C20—C21120.4 (4)
C16—N3—C18118.8 (3)C20—C21—C22122.2 (4)
C7—N1—H1125.00C23—C22—C25'119.7 (5)
C6—N1—H1125.00C21—C22—C25121.0 (5)
N3—N2—H2A121.00C21—C22—C25'121.0 (5)
C15—N2—H2A121.00C21—C22—C23119.4 (5)
C2—C1—C6119.0 (3)C23—C22—C25119.7 (5)
C2—C1—C8133.8 (3)C22—C23—C24121.5 (5)
C6—C1—C8107.0 (3)C19—C24—C23119.4 (4)
C1—C2—C3117.6 (4)C1—C2—H2121.00
C2—C3—C4122.9 (4)C3—C2—H2121.00
Cl1—C3—C2118.9 (3)C3—C4—H4120.00
Cl1—C3—C4118.1 (3)C5—C4—H4120.00
C3—C4—C5120.5 (4)C4—C5—H5121.00
C4—C5—C6117.7 (4)C6—C5—H5121.00
N1—C6—C1108.0 (3)C9—C10—H10120.00
N1—C6—C5129.8 (3)C11—C10—H10120.00
C1—C6—C5122.1 (3)C10—C11—H11120.00
N1—C7—C8109.6 (3)C12—C11—H11120.00
C8—C7—C15135.7 (3)C11—C12—H12120.00
N1—C7—C15114.8 (3)C13—C12—H12120.00
C1—C8—C7106.0 (3)C12—C13—H13120.00
C1—C8—C9123.4 (3)C14—C13—H13120.00
C7—C8—C9130.1 (3)C9—C14—H14120.00
C10—C9—C14118.0 (4)C13—C14—H14120.00
C8—C9—C14120.4 (3)S1—C17—H17A110.00
C8—C9—C10121.4 (3)S1—C17—H17B110.00
C9—C10—C11120.8 (4)C16—C17—H17A110.00
C10—C11—C12120.1 (5)C16—C17—H17B110.00
C11—C12—C13120.1 (6)H17A—C17—H17B109.00
C12—C13—C14120.1 (5)S1—C18—H18110.00
C9—C14—C13120.8 (4)N3—C18—H18110.00
O1—C15—N2122.1 (3)C19—C18—H18110.00
O1—C15—C7121.1 (3)C19—C20—H20120.00
N2—C15—C7116.9 (3)C21—C20—H20120.00
O2—C16—C17124.9 (4)C20—C21—H21119.00
N3—C16—C17111.3 (3)C22—C21—H21119.00
O2—C16—N3123.8 (3)C22—C23—H23119.00
S1—C17—C16107.2 (3)C24—C23—H23119.00
N3—C18—C19114.6 (3)C19—C24—H24120.00
S1—C18—N3100.0 (2)C23—C24—H24120.00
C17—S1—C18—C19150.1 (3)C15—C7—C8—C1179.5 (4)
C18—S1—C17—C1622.9 (3)C15—C7—C8—C98.0 (7)
C17—S1—C18—N328.4 (3)N1—C7—C8—C10.1 (4)
C6—N1—C7—C15180.0 (3)N1—C7—C8—C9171.4 (3)
C7—N1—C6—C10.8 (4)C8—C7—C15—O1159.8 (4)
C6—N1—C7—C80.5 (4)C8—C7—C15—N221.3 (6)
C7—N1—C6—C5178.2 (4)N1—C7—C15—N2159.4 (3)
N3—N2—C15—O12.6 (5)C7—C8—C9—C14142.6 (4)
C15—N2—N3—C1682.3 (4)C7—C8—C9—C1043.0 (6)
C15—N2—N3—C18120.9 (3)C1—C8—C9—C10127.2 (4)
N3—N2—C15—C7176.4 (3)C1—C8—C9—C1447.2 (5)
C18—N3—C16—C1715.4 (5)C8—C9—C10—C11174.6 (4)
N2—N3—C18—C1952.5 (4)C8—C9—C14—C13172.5 (3)
N2—N3—C16—C17171.8 (3)C10—C9—C14—C132.2 (5)
C16—N3—C18—C19150.3 (3)C14—C9—C10—C110.0 (6)
C16—N3—C18—S130.6 (4)C9—C10—C11—C122.6 (7)
C18—N3—C16—O2166.3 (4)C10—C11—C12—C133.2 (8)
N2—N3—C18—S1172.2 (2)C11—C12—C13—C141.1 (8)
N2—N3—C16—O29.8 (6)C12—C13—C14—C91.7 (6)
C8—C1—C2—C3173.9 (4)O2—C16—C17—S1169.2 (4)
C6—C1—C2—C31.1 (6)N3—C16—C17—S19.1 (4)
C6—C1—C8—C70.4 (4)S1—C18—C19—C2065.7 (5)
C2—C1—C6—N1173.9 (3)S1—C18—C19—C24114.5 (4)
C2—C1—C6—C53.8 (6)N3—C18—C19—C2047.2 (5)
C2—C1—C8—C90.9 (6)N3—C18—C19—C24132.6 (4)
C2—C1—C8—C7173.1 (4)C18—C19—C20—C21178.2 (4)
C6—C1—C8—C9172.6 (3)C24—C19—C20—C212.0 (7)
C8—C1—C6—C5178.4 (3)C18—C19—C24—C23177.1 (4)
C8—C1—C6—N10.7 (4)C20—C19—C24—C233.1 (7)
C1—C2—C3—Cl1175.8 (3)C19—C20—C21—C221.0 (8)
C1—C2—C3—C42.3 (7)C20—C21—C22—C232.8 (8)
Cl1—C3—C4—C5175.0 (4)C20—C21—C22—C25177.0 (5)
C2—C3—C4—C53.1 (7)C20—C21—C22—C25'177.0 (5)
C3—C4—C5—C60.4 (6)C21—C22—C23—C241.6 (8)
C4—C5—C6—N1174.1 (4)C25—C22—C23—C24178.2 (5)
C4—C5—C6—C13.0 (6)C25'—C22—C23—C24178.2 (5)
N1—C7—C15—O119.5 (5)C22—C23—C24—C191.4 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.864 (4)151
N2—H2A···O2ii0.862.342.851 (4)118
C18—H18···O2ii0.982.533.145 (5)121
C21—H21···F30.932.402.719 (10)100
C24—H24···Cg1iii0.932.773.438 (5)129
C17—H17B···Cg2iv0.972.953.799 (5)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) y1/4, x+5/4, z+5/4; (iii) y+3/4, x+1/4, z+1/4; (iv) y+5/4, x+1/4, z+5/4.

Experimental details

Crystal data
Chemical formulaC25H17ClF3N3O2S
Mr515.94
Crystal system, space groupTetragonal, I41/a
Temperature (K)296
a, c (Å)22.9020 (6), 18.3260 (6)
V3)9612.0 (6)
Z16
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.57 × 0.43 × 0.29
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.849, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
71781, 4968, 3054
Rint0.076
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.210, 1.05
No. of reflections4968
No. of parameters345
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.30

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.864 (4)151
N2—H2A···O2ii0.862.342.851 (4)118
C18—H18···O2ii0.982.533.145 (5)121
C24—H24···Cg1iii0.932.773.438 (5)129
C17—H17B···Cg2iv0.972.953.799 (5)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) y1/4, x+5/4, z+5/4; (iii) y+3/4, x+1/4, z+1/4; (iv) y+5/4, x+1/4, z+5/4.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported by the Istanbul University Department of Scientific Research Projects (project No T-721/30062005).

References

First citationAkkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1691–o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011a). Acta Cryst. E67, o293–o294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011b). Acta Cryst. E67, o745–o746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Çelik, İ., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011c). Acta Cryst. E67, o914–o915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeale, J. M. (2011). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed., edited by J. M. Beale & J. H. Block, pp. 342–352. Philadelphia: Lippincott Williams and Wilkins.  Google Scholar
First citationBrancale, A. & Silvestri, R. (2007). Med. Res. Rev. 27, 209–238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCihan-Ustundag, G. & Capan, G. (2012). Mol Divers. doi:10.1007/s11030-012-9385-y.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOudard, S., Beuselinck, B., Decoene, J. & Albers, P. (2011). Cancer Treat. Rev. 37, 178–184.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVerma, A. & Saraf, K. S. (2008). Eur. J. Med. Chem. 43, 897–905.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds