organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Butyl-3-ethyl-1H-benzimidazol-3-ium tetra­fluoro­borate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 22 July 2012; accepted 30 August 2012; online 5 September 2012)

In the title salt, C13H19N2+·BF4, an ionic liquid, the butyl and ethyl substituents bonded to the N atoms of the imidazole ring [r.m.s. deviation = 0.019 (1) Å] adopt equatorial positions. The crystal structure exhibits slipped ππ inter­actions between the imidazole and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.529 (2) Å]. In the tetra­fluoro­borate anion, the B and F atoms are disordered over two sets of sites with site-occupancy factors of 0.813 (7) and 0.187 (7).

Related literature

For properties of ionic liquids, see: Zhao & Malhotra (2002[Zhao, H. & Malhotra, S. V. (2002). Aldrichim. Acta, 35, 75-83.]) For imidazolium-based ionic liquids, see: Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2071-2083.]); Hallett & Welton (2011[Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508-3576.]); Costache et al. (2007[Costache, M. C., Heidecker, M. J., Manias, E., Gupta, R. K. & Wilkie, C. A. (2007). Polym. Degrad. Stab., 92, 1753-1762.]); Chen et al. (2008[Chen, S.-H., Zhao, Q. & Xu, X.-W. (2008). J. Chem. Sci. 120, 481-483.]). For the synthesis of ionic liquid compounds, see: Dupont et al. (2004[Dupont, J., Consorti, C. S., Suarez, P. A. Z. & de Souza, R. F. (2004). Org. Synth. 79, 236-243.]); Huang et al. (2004[Huang, W.-G., Zhang, S.-M., Dai, L.-Y. & Shan, Y.-K. (2004). J. Chem. Res. pp. 506-507.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19N2+·BF4

  • Mr = 290.11

  • Monoclinic, P 21 /n

  • a = 11.0043 (13) Å

  • b = 12.0372 (9) Å

  • c = 11.3693 (10) Å

  • β = 99.312 (9)°

  • V = 1486.1 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.96 mm−1

  • T = 173 K

  • 0.29 × 0.24 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.769, Tmax = 0.831

  • 9159 measured reflections

  • 2860 independent reflections

  • 2655 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.05

  • 2860 reflections

  • 229 parameters

  • 68 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to their unique properties, ionic liquids have emerged as environmentally friendly alternatives for volatile organic solvents (Zhao et al., 2002). In particular, imidazolium-based ionic liquids have been used as solvents and catalysts for a wide variety of chemical processes (Welton, 1999; Hallett et al., 2011). Benzimidazole can be viewed as a homologue of imidazole and, therefore, similar properties and applications as seen with the imidazolium-based ionic liquids is expected (Costache et al., 2007; Chen et al., 2008). In continuation of our work with ionic liquids, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), imidazole ring is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the five constituent atoms. In the tetrafluoroborate group, the B and F atoms are disordered over two positions with site-occupancy factors, from refinement of 0.813 (7) (part A) and 0.187 (7) (part B). The butyl and ethyl substituents bonded to the nitrogen atoms with the mean plane of the imidazole ring adopt equatorial positions. Bond lengths are in normal ranges (Allen et al., 1987).

The crystal packing (Fig. 2) exhibits slipped ππ intermolecular stacking interactions between the imidazole and benzene rings of neighbouring molecules, with a Cg1-Cg2 distance of 3.5300 (11) Å and an interplanar distance of 3.529 (3)Å resulting in a slippage of 3.11 (2)Å (Fig. 2) (Cg1 and Cg2 are the centroids of the N1/C1/N2/C7/C2 imidazole ring and the C2–C7 benzene ring, respectively). In the crystal structure the disordered C—H···F interactions were ignored.

Related literature top

For properties of ionic liquids, see: Zhao et al. (2002) For imidazolium-based ionic liquids, see: Welton (1999); Hallett et al. (2011); Costache et al. (2007); Chen et al. (2008). For related literature [on what subject?], see: Dupont et al. (2004); Huang et al. (2004). For standard bond lengths, see Allen et al. (1987).

Experimental top

1-butylbenzimidazole (1.001 g, 5.74 mmol) and ethyl bromide (471µL, 6.31mmol) were combined in a sample vial equipped with a stir bar. The mixture washeated at 80 °C in an oil bath for 24 h. Once cooled, 3 ml of acetonitrile was added to dissolve the mixture and toluene was then added drop wise until the mixture turned cloudy (8–10 ml). The mixture was then cooled, filtered, and dried under vacuum to yield 1-butyl-3-ethyl-1H-benzimidazol-3-iumbromide. 1-Butyl-3-ethyl-1H-benzimidazol-3-ium bromide (250 mg, 0.883mmol), sodium tetrafluoroborate (97 mg, 0.883 mmol), and distilled water (5ml) were combined in a 25 ml round-bottom flask and allowed to stir at roomtemperature for 24 h. The reaction mixture was then extracted with dichloromethane (4 x 5 ml) and dried over Na2SO4. The dichloromethane was removed solvent by rotary evaporation, and dried under vacuum to yield the title product (m.p.: 354 - 356 K).

Refinement top

The B and F atoms in the tetrafluoroborate anion are disordered over two sets of site with an occupancy ratio: 0.813 (7):0.187 (7) and with all B—F distances fixed at 1.36 (2)Å with ISOR (s = 0.01) constraints applied. In the cation, all of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.18 to 1.20 (CH), 1.20 (CH2or 1.50 (CH3) times Ueq of the parent atom.

Structure description top

Due to their unique properties, ionic liquids have emerged as environmentally friendly alternatives for volatile organic solvents (Zhao et al., 2002). In particular, imidazolium-based ionic liquids have been used as solvents and catalysts for a wide variety of chemical processes (Welton, 1999; Hallett et al., 2011). Benzimidazole can be viewed as a homologue of imidazole and, therefore, similar properties and applications as seen with the imidazolium-based ionic liquids is expected (Costache et al., 2007; Chen et al., 2008). In continuation of our work with ionic liquids, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), imidazole ring is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the five constituent atoms. In the tetrafluoroborate group, the B and F atoms are disordered over two positions with site-occupancy factors, from refinement of 0.813 (7) (part A) and 0.187 (7) (part B). The butyl and ethyl substituents bonded to the nitrogen atoms with the mean plane of the imidazole ring adopt equatorial positions. Bond lengths are in normal ranges (Allen et al., 1987).

The crystal packing (Fig. 2) exhibits slipped ππ intermolecular stacking interactions between the imidazole and benzene rings of neighbouring molecules, with a Cg1-Cg2 distance of 3.5300 (11) Å and an interplanar distance of 3.529 (3)Å resulting in a slippage of 3.11 (2)Å (Fig. 2) (Cg1 and Cg2 are the centroids of the N1/C1/N2/C7/C2 imidazole ring and the C2–C7 benzene ring, respectively). In the crystal structure the disordered C—H···F interactions were ignored.

For properties of ionic liquids, see: Zhao et al. (2002) For imidazolium-based ionic liquids, see: Welton (1999); Hallett et al. (2011); Costache et al. (2007); Chen et al. (2008). For related literature [on what subject?], see: Dupont et al. (2004); Huang et al. (2004). For standard bond lengths, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The B and F atoms of the tetrafluoroborate group are disordered over two positions with refined site-occupancy factors of 0.813 (7) (part A) and 0.187 (7) (part B).
[Figure 2] Fig. 2. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. (Cg1 and Cg2 are the centroids of the N1/C1/N2/C7/C2 imidazole ring and the C2–C7 benzene ring, respectively; Symmetry code: 1-x, 1-y, 1-z). Disordered tetrafluoroborate group and all H atoms were omitted for clarity.
1-Butyl-3-ethyl-1H-benzimidazol-3-ium tetrafluoroborate top
Crystal data top
C13H19N2+·BF4F(000) = 608
Mr = 290.11Dx = 1.297 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 4678 reflections
a = 11.0043 (13) Åθ = 3.7–71.2°
b = 12.0372 (9) ŵ = 0.96 mm1
c = 11.3693 (10) ÅT = 173 K
β = 99.312 (9)°Block, colorless
V = 1486.1 (2) Å30.29 × 0.24 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2860 independent reflections
Radiation source: Enhance (Cu) X-ray Source2655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.1500 pixels mm-1θmax = 71.3°, θmin = 5.2°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1410
Tmin = 0.769, Tmax = 0.831l = 1313
9159 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.572P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.46 e Å3
68 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H19N2+·BF4V = 1486.1 (2) Å3
Mr = 290.11Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.0043 (13) ŵ = 0.96 mm1
b = 12.0372 (9) ÅT = 173 K
c = 11.3693 (10) Å0.29 × 0.24 × 0.20 mm
β = 99.312 (9)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2655 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.831Rint = 0.024
9159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04868 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.46 e Å3
2860 reflectionsΔρmin = 0.25 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.71813 (12)0.62371 (10)0.52811 (11)0.0306 (3)
N20.69467 (12)0.52167 (11)0.36726 (11)0.0338 (3)
C10.77356 (14)0.55764 (12)0.45961 (13)0.0323 (3)
H1A0.85850.53880.47490.039*
C20.59463 (14)0.63191 (12)0.47691 (13)0.0311 (3)
C30.49671 (16)0.68773 (14)0.51404 (15)0.0378 (4)
H3A0.50750.73310.58330.045*
C40.38307 (16)0.67323 (15)0.44437 (17)0.0434 (4)
H4A0.31340.70940.46640.052*
C50.36742 (16)0.60653 (15)0.34185 (17)0.0450 (4)
H5A0.28730.59820.29700.054*
C60.46499 (16)0.55249 (14)0.30407 (15)0.0408 (4)
H6A0.45440.50820.23400.049*
C70.57954 (15)0.56672 (12)0.37449 (14)0.0329 (3)
C80.72604 (18)0.44867 (14)0.27240 (15)0.0428 (4)
H8A0.65720.39640.24750.051*
H8B0.79980.40440.30430.051*
C90.75105 (18)0.51369 (15)0.16499 (15)0.0439 (4)
H9A0.81640.56920.19060.053*
H9B0.67560.55420.12980.053*
C100.7910 (2)0.43834 (17)0.07123 (17)0.0509 (5)
H10A0.86400.39520.10790.061*
H10B0.72400.38500.04340.061*
C110.8223 (2)0.50152 (19)0.03470 (17)0.0549 (5)
H11A0.84720.44910.09230.082*
H11B0.89010.55310.00810.082*
H11C0.75000.54330.07240.082*
C120.77365 (16)0.67731 (15)0.64023 (14)0.0390 (4)
H12A0.72210.66160.70200.047*
H12B0.77440.75870.62820.047*
C130.90314 (17)0.63838 (17)0.68417 (16)0.0476 (5)
H13A0.93400.67370.76090.071*
H13B0.95610.65860.62610.071*
H13C0.90350.55750.69410.071*
B1A0.4707 (5)0.2091 (4)0.1379 (6)0.0362 (11)0.813 (7)
F1A0.4128 (2)0.30962 (17)0.1306 (3)0.0838 (9)0.813 (7)
F2A0.4454 (2)0.1576 (2)0.23845 (16)0.0761 (8)0.813 (7)
F3A0.4286 (6)0.1443 (5)0.0392 (4)0.0713 (13)0.813 (7)
F4A0.5969 (3)0.2217 (2)0.1492 (3)0.0582 (7)0.813 (7)
B1B0.472 (2)0.2157 (18)0.112 (2)0.040 (7)0.187 (7)
F1B0.4416 (19)0.3070 (16)0.052 (2)0.171 (7)0.187 (7)
F2B0.4146 (12)0.2333 (16)0.2030 (13)0.118 (5)0.187 (7)
F3B0.443 (3)0.122 (2)0.061 (2)0.077 (6)0.187 (7)
F4B0.5827 (15)0.2487 (14)0.1055 (15)0.081 (4)0.187 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0337 (7)0.0301 (6)0.0287 (6)0.0005 (5)0.0076 (5)0.0000 (5)
N20.0407 (7)0.0313 (7)0.0305 (6)0.0021 (5)0.0095 (5)0.0023 (5)
C10.0353 (8)0.0311 (7)0.0320 (8)0.0006 (6)0.0097 (6)0.0010 (6)
C20.0354 (8)0.0278 (7)0.0307 (7)0.0009 (6)0.0072 (6)0.0064 (6)
C30.0429 (9)0.0336 (8)0.0391 (8)0.0045 (7)0.0134 (7)0.0079 (6)
C40.0383 (9)0.0402 (9)0.0533 (10)0.0064 (7)0.0118 (7)0.0178 (8)
C50.0376 (9)0.0426 (9)0.0515 (10)0.0040 (7)0.0026 (7)0.0186 (8)
C60.0466 (9)0.0359 (8)0.0375 (8)0.0073 (7)0.0000 (7)0.0076 (7)
C70.0383 (8)0.0288 (7)0.0318 (7)0.0028 (6)0.0068 (6)0.0055 (6)
C80.0571 (11)0.0363 (8)0.0367 (9)0.0009 (7)0.0122 (8)0.0094 (7)
C90.0543 (10)0.0407 (9)0.0379 (9)0.0013 (8)0.0112 (8)0.0060 (7)
C100.0673 (12)0.0467 (10)0.0409 (10)0.0011 (9)0.0154 (9)0.0084 (8)
C110.0645 (13)0.0609 (12)0.0415 (10)0.0026 (10)0.0156 (9)0.0045 (9)
C120.0463 (9)0.0391 (8)0.0309 (8)0.0022 (7)0.0042 (7)0.0065 (6)
C130.0464 (10)0.0588 (11)0.0357 (9)0.0040 (8)0.0005 (7)0.0104 (8)
B1A0.0314 (19)0.039 (2)0.040 (2)0.0010 (13)0.0120 (14)0.0148 (14)
F1A0.0794 (13)0.0589 (11)0.113 (2)0.0298 (9)0.0161 (12)0.0073 (11)
F2A0.0966 (15)0.0817 (15)0.0552 (10)0.0204 (11)0.0273 (9)0.0024 (9)
F3A0.0738 (19)0.088 (3)0.0556 (13)0.033 (2)0.0194 (11)0.0336 (17)
F4A0.0376 (9)0.0520 (11)0.0852 (17)0.0042 (8)0.0103 (10)0.0151 (11)
B1B0.036 (9)0.044 (9)0.041 (10)0.005 (6)0.006 (6)0.008 (6)
F1B0.183 (11)0.153 (10)0.175 (11)0.065 (8)0.025 (8)0.047 (8)
F2B0.112 (7)0.144 (11)0.103 (7)0.007 (7)0.036 (6)0.032 (8)
F3B0.075 (8)0.056 (6)0.111 (11)0.025 (5)0.044 (8)0.024 (6)
F4B0.060 (6)0.085 (8)0.104 (9)0.025 (6)0.031 (6)0.031 (6)
Geometric parameters (Å, º) top
N1—C11.3283 (19)C9—H9B0.9900
N1—C21.393 (2)C10—C111.511 (3)
N1—C121.471 (2)C10—H10A0.9900
N2—C11.322 (2)C10—H10B0.9900
N2—C71.393 (2)C11—H11A0.9800
N2—C81.475 (2)C11—H11B0.9800
C1—H1A0.9500C11—H11C0.9800
C2—C71.392 (2)C12—C131.506 (2)
C2—C31.392 (2)C12—H12A0.9900
C3—C41.379 (3)C12—H12B0.9900
C3—H3A0.9500C13—H13A0.9800
C4—C51.403 (3)C13—H13B0.9800
C4—H4A0.9500C13—H13C0.9800
C5—C61.382 (3)B1A—F1A1.364 (5)
C5—H5A0.9500B1A—F2A1.368 (7)
C6—C71.390 (2)B1A—F4A1.382 (5)
C6—H6A0.9500B1A—F3A1.383 (6)
C8—C91.513 (2)B1B—F3B1.288 (19)
C8—H8A0.9900B1B—F4B1.291 (19)
C8—H8B0.9900B1B—F1B1.307 (19)
C9—C101.518 (2)B1B—F2B1.315 (18)
C9—H9A0.9900F1B—F4B1.72 (3)
C1—N1—C2107.88 (13)C11—C10—C9112.86 (16)
C1—N1—C12127.24 (14)C11—C10—H10A109.0
C2—N1—C12124.86 (13)C9—C10—H10A109.0
C1—N2—C7108.19 (13)C11—C10—H10B109.0
C1—N2—C8125.07 (14)C9—C10—H10B109.0
C7—N2—C8126.73 (14)H10A—C10—H10B107.8
N2—C1—N1110.90 (14)C10—C11—H11A109.5
N2—C1—H1A124.5C10—C11—H11B109.5
N1—C1—H1A124.5H11A—C11—H11B109.5
C7—C2—C3122.17 (15)C10—C11—H11C109.5
C7—C2—N1106.62 (13)H11A—C11—H11C109.5
C3—C2—N1131.18 (15)H11B—C11—H11C109.5
C4—C3—C2116.06 (16)N1—C12—C13112.89 (14)
C4—C3—H3A122.0N1—C12—H12A109.0
C2—C3—H3A122.0C13—C12—H12A109.0
C3—C4—C5121.86 (16)N1—C12—H12B109.0
C3—C4—H4A119.1C13—C12—H12B109.0
C5—C4—H4A119.1H12A—C12—H12B107.8
C6—C5—C4122.04 (16)C12—C13—H13A109.5
C6—C5—H5A119.0C12—C13—H13B109.5
C4—C5—H5A119.0H13A—C13—H13B109.5
C5—C6—C7116.15 (16)C12—C13—H13C109.5
C5—C6—H6A121.9H13A—C13—H13C109.5
C7—C6—H6A121.9H13B—C13—H13C109.5
C6—C7—C2121.71 (15)F1A—B1A—F2A107.2 (4)
C6—C7—N2131.82 (15)F1A—B1A—F4A111.2 (4)
C2—C7—N2106.41 (13)F2A—B1A—F4A108.1 (5)
N2—C8—C9112.13 (14)F1A—B1A—F3A111.0 (5)
N2—C8—H8A109.2F2A—B1A—F3A109.6 (4)
C9—C8—H8A109.2F4A—B1A—F3A109.7 (5)
N2—C8—H8B109.2F3B—B1B—F4B114 (2)
C9—C8—H8B109.2F3B—B1B—F1B119 (2)
H8A—C8—H8B107.9F4B—B1B—F1B83.0 (17)
C8—C9—C10111.65 (15)F3B—B1B—F2B112 (2)
C8—C9—H9A109.3F4B—B1B—F2B125 (2)
C10—C9—H9A109.3F1B—B1B—F2B98.9 (19)
C8—C9—H9B109.3B1B—F1B—F4B48.1 (11)
C10—C9—H9B109.3B1B—F4B—F1B48.9 (11)
H9A—C9—H9B108.0
C7—N2—C1—N10.12 (17)C3—C2—C7—N2178.24 (13)
C8—N2—C1—N1178.73 (14)N1—C2—C7—N20.17 (15)
C2—N1—C1—N20.23 (17)C1—N2—C7—C6176.98 (16)
C12—N1—C1—N2178.14 (14)C8—N2—C7—C64.4 (3)
C1—N1—C2—C70.25 (16)C1—N2—C7—C20.04 (16)
C12—N1—C2—C7178.17 (14)C8—N2—C7—C2178.54 (14)
C1—N1—C2—C3178.08 (15)C1—N2—C8—C995.55 (19)
C12—N1—C2—C30.3 (2)C7—N2—C8—C982.8 (2)
C7—C2—C3—C41.0 (2)N2—C8—C9—C10176.41 (15)
N1—C2—C3—C4176.50 (14)C8—C9—C10—C11177.36 (17)
C2—C3—C4—C50.3 (2)C1—N1—C12—C137.8 (2)
C3—C4—C5—C60.7 (3)C2—N1—C12—C13170.28 (15)
C4—C5—C6—C70.9 (2)F3B—B1B—F1B—F4B114 (3)
C5—C6—C7—C20.1 (2)F2B—B1B—F1B—F4B125 (2)
C5—C6—C7—N2176.50 (15)F3B—B1B—F4B—F1B118 (3)
C3—C2—C7—C60.8 (2)F2B—B1B—F4B—F1B96 (3)
N1—C2—C7—C6177.22 (13)

Experimental details

Crystal data
Chemical formulaC13H19N2+·BF4
Mr290.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.0043 (13), 12.0372 (9), 11.3693 (10)
β (°) 99.312 (9)
V3)1486.1 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.96
Crystal size (mm)0.29 × 0.24 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.769, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
9159, 2860, 2655
Rint0.024
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.05
No. of reflections2860
No. of parameters229
No. of restraints68
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

DRS would like to thank the Keene State College Chemistry Department Alumni Fund for supporting his work. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationChen, S.-H., Zhao, Q. & Xu, X.-W. (2008). J. Chem. Sci. 120, 481–483.  Web of Science CrossRef CAS Google Scholar
First citationCostache, M. C., Heidecker, M. J., Manias, E., Gupta, R. K. & Wilkie, C. A. (2007). Polym. Degrad. Stab., 92, 1753–1762.  Web of Science CrossRef CAS Google Scholar
First citationDupont, J., Consorti, C. S., Suarez, P. A. Z. & de Souza, R. F. (2004). Org. Synth. 79, 236–243.  Google Scholar
First citationHallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508–3576.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuang, W.-G., Zhang, S.-M., Dai, L.-Y. & Shan, Y.-K. (2004). J. Chem. Res. pp. 506–507.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, H. & Malhotra, S. V. (2002). Aldrichim. Acta, 35, 75–83.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds