organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5,3′,5′-Tetra­methyl-4,4′-bi(1H-pyrazol­yl) hemihydrate

aTianmu College of ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: shouwenjin@yahoo.cn

(Received 21 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title compound, C10H14N4·0.5H2O, the amino H atom of one of the two pyrazole rings is disordered over its two N atoms in a 1:1 ratio. The pyrazole rings are aligned at 60.1 (1)°. In the crystal, two bipyrazolyl mol­ecules are linked by an N—H⋯N hydrogen bond, generating a dimer; the dimer is connected to the water mol­ecule, which lies on a twofold rotation axis, resulting in the formation of a chain that makes an angle of ca 45.3 (1)° with the ab plane. The chains are cross-linked by N—H⋯O and O—H⋯N inter­actions, forming a three-dimensional network.

Related literature

For general background to coordination compounds based on 3,5,3′,5′-tetra­methyl-1H,1′H-[4,4′]bipyrazolyl, see: Boldog et al. (2001[Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Polyhedron, 20, 887-897.]); Zhang & Kitagawa (2008[Zhang, J. P. & Kitagawa, S. (2008). J. Am. Chem. Soc. 130, 907-917.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N4·0.5H2O

  • Mr = 199.26

  • Tetragonal, I 41 /a c d

  • a = 24.9060 (4) Å

  • c = 14.9684 (2) Å

  • V = 9285.0 (2) Å3

  • Z = 32

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.38 × 0.37 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.973

  • 27495 measured reflections

  • 2050 independent reflections

  • 1480 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.169

  • S = 1.10

  • 2050 reflections

  • 144 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯N4 0.84 (1) 1.95 (1) 2.791 (2) 175 (2)
N3—H3⋯O1i 0.88 (3) 1.96 (3) 2.827 (2) 169 (2)
N2—H2⋯N2ii 0.91 (5) 2.23 (5) 3.015 (4) 144 (5)
N1—H1⋯N1iii 0.91 (5) 1.98 (5) 2.862 (4) 164 (5)
Symmetry codes: (i) [-y+{\script{7\over 4}}, x+{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [y+{\script{1\over 4}}, x-{\script{1\over 4}}, -z+{\script{7\over 4}}]; (iii) [-x+2, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of 3,5,3',5'-tetramethyl-1H,1'H-[4,4']bipyrazolyl has drawn strong interest in coordination chemistry (Zhang et al., 2008, Boldog et al., 2001).

In the crystal structure of C10H14N4.0.5H2O, the amino H atom of one of the two pyrazole rings is disordered over its two N atoms in a 1:1 ratio. The two pyrazole rings are aligned at 60.1 (1)°. Two C10H14N4 molecules are linked by an N–H···N hydrogen bond to generate a dimer; the dimer is connected to the water molecule, which lies on a twofold rotation axis to chain that makes an angle of ca 45.3 (1)° with the ab plane. The chains were crosslinked together by N—H···O, and O—H···N associations to form a three-dimensional network structure

Related literature top

For general background to coordination compounds based on 3,5,3',5'-tetramethyl-1H,1'H-[4,4']bipyrazolyl, see: Boldog et al. (2001); Zhang & Kitagawa (2008).

Experimental top

3,5,3',5'-Tetramethyl-1H,1'H-[4,4']bipyrazolyl was prepared according to the literature and crystals were grown from its solution in ethanol. (Boldog et al. 2001).

Refinement top

H atoms bonded to N, and O atoms were located in a difference Fourier map and refined isotropically.

Other H atoms were positioned geometrically with C—H = 0.96 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

The use of 3,5,3',5'-tetramethyl-1H,1'H-[4,4']bipyrazolyl has drawn strong interest in coordination chemistry (Zhang et al., 2008, Boldog et al., 2001).

In the crystal structure of C10H14N4.0.5H2O, the amino H atom of one of the two pyrazole rings is disordered over its two N atoms in a 1:1 ratio. The two pyrazole rings are aligned at 60.1 (1)°. Two C10H14N4 molecules are linked by an N–H···N hydrogen bond to generate a dimer; the dimer is connected to the water molecule, which lies on a twofold rotation axis to chain that makes an angle of ca 45.3 (1)° with the ab plane. The chains were crosslinked together by N—H···O, and O—H···N associations to form a three-dimensional network structure

For general background to coordination compounds based on 3,5,3',5'-tetramethyl-1H,1'H-[4,4']bipyrazolyl, see: Boldog et al. (2001); Zhang & Kitagawa (2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The chain structure formed through the nonbonding interactions.
3,5,3',5'-Tetramethyl-4,4'-bi(1H-pyrazolyl) hemihydrate top
Crystal data top
C10H14N4·0.5H2ODx = 1.140 Mg m3
Mr = 199.26Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/acdCell parameters from 3432 reflections
Hall symbol: -I 4bd 2cθ = 2.6–28.4°
a = 24.9060 (4) ŵ = 0.08 mm1
c = 14.9684 (2) ÅT = 293 K
V = 9285.0 (2) Å3Block, colorless
Z = 320.40 × 0.38 × 0.37 mm
F(000) = 3424
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2050 independent reflections
Radiation source: fine-focus sealed tube1480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2929
Tmin = 0.970, Tmax = 0.973k = 2429
27495 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0974P)2 + 1.819P]
where P = (Fo2 + 2Fc2)/3
2050 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C10H14N4·0.5H2OZ = 32
Mr = 199.26Mo Kα radiation
Tetragonal, I41/acdµ = 0.08 mm1
a = 24.9060 (4) ÅT = 293 K
c = 14.9684 (2) Å0.40 × 0.38 × 0.37 mm
V = 9285.0 (2) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2050 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1480 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.973Rint = 0.070
27495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.23 e Å3
2050 reflectionsΔρmin = 0.15 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.94307 (8)0.75779 (9)0.78322 (15)0.0541 (6)
H10.9776 (18)0.747 (2)0.788 (3)0.065*0.50
N20.90490 (9)0.72523 (9)0.81759 (15)0.0553 (6)
H20.915 (2)0.694 (2)0.843 (4)0.066*0.50
N30.77810 (8)0.89553 (8)0.65442 (13)0.0456 (5)
H30.7666 (10)0.9167 (10)0.6112 (17)0.055*
N40.76044 (8)0.90310 (8)0.73926 (12)0.0466 (5)
O10.70458 (8)1.00000.75000.0384 (5)
H1D0.7224 (8)0.9711 (6)0.7496 (15)0.046*
C10.95234 (11)0.84574 (12)0.7094 (2)0.0661 (8)
H1A0.98420.85100.74440.099*
H1B0.93170.87830.70870.099*
H1C0.96210.83630.64950.099*
C20.91976 (9)0.80188 (9)0.74928 (16)0.0437 (6)
C30.86404 (8)0.79798 (9)0.76267 (14)0.0371 (5)
C40.85697 (9)0.74878 (10)0.80591 (15)0.0448 (6)
C50.80618 (11)0.72243 (11)0.8364 (2)0.0743 (9)
H5A0.80990.68420.83210.111*
H5B0.77690.73410.79950.111*
H5C0.79920.73220.89740.111*
C60.84046 (14)0.84292 (14)0.56201 (18)0.0778 (10)
H6A0.83430.87110.51950.117*
H6B0.82460.81020.54060.117*
H6C0.87840.83790.56970.117*
C70.81576 (9)0.85775 (9)0.64938 (14)0.0411 (6)
C80.82394 (8)0.83821 (8)0.73500 (14)0.0360 (5)
C90.78832 (9)0.86804 (9)0.78872 (15)0.0414 (6)
C100.77949 (12)0.86516 (12)0.88733 (17)0.0670 (8)
H10A0.75990.89620.90660.100*
H10B0.81350.86400.91730.100*
H10C0.75940.83340.90140.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0405 (12)0.0563 (14)0.0656 (14)0.0158 (11)0.0071 (10)0.0029 (11)
N20.0478 (13)0.0522 (14)0.0659 (15)0.0120 (11)0.0155 (10)0.0047 (11)
N30.0510 (12)0.0432 (12)0.0425 (12)0.0130 (10)0.0015 (9)0.0093 (9)
N40.0458 (12)0.0496 (12)0.0444 (11)0.0139 (9)0.0023 (9)0.0035 (9)
O10.0378 (13)0.0342 (12)0.0433 (12)0.0000.0000.0036 (10)
C10.0445 (15)0.0709 (19)0.083 (2)0.0065 (14)0.0094 (14)0.0056 (15)
C20.0360 (12)0.0457 (13)0.0493 (13)0.0050 (11)0.0013 (10)0.0036 (10)
C30.0317 (12)0.0394 (12)0.0401 (12)0.0036 (10)0.0051 (9)0.0018 (9)
C40.0390 (13)0.0449 (14)0.0504 (14)0.0029 (11)0.0118 (10)0.0088 (10)
C50.0577 (18)0.0673 (19)0.098 (2)0.0160 (15)0.0166 (15)0.0370 (16)
C60.094 (2)0.096 (2)0.0436 (15)0.0424 (19)0.0033 (14)0.0021 (14)
C70.0452 (14)0.0388 (12)0.0394 (13)0.0080 (11)0.0003 (10)0.0028 (9)
C80.0333 (12)0.0347 (11)0.0399 (12)0.0011 (10)0.0017 (9)0.0028 (9)
C90.0377 (13)0.0449 (13)0.0416 (12)0.0052 (11)0.0007 (10)0.0048 (10)
C100.073 (2)0.079 (2)0.0487 (16)0.0162 (16)0.0103 (14)0.0079 (13)
Geometric parameters (Å, º) top
N1—C21.342 (3)C3—C81.474 (3)
N1—N21.351 (3)C4—C51.497 (3)
N1—H10.91 (5)C5—H5A0.9600
N2—C41.342 (3)C5—H5B0.9600
N2—H20.91 (5)C5—H5C0.9600
N3—C71.331 (3)C6—C71.492 (3)
N3—N41.357 (3)C6—H6A0.9600
N3—H30.88 (3)C6—H6B0.9600
N4—C91.339 (3)C6—H6C0.9600
O1—H1D0.844 (9)C7—C81.386 (3)
C1—C21.486 (3)C8—C91.409 (3)
C1—H1A0.9600C9—C101.494 (3)
C1—H1B0.9600C10—H10A0.9600
C1—H1C0.9600C10—H10B0.9600
C2—C31.406 (3)C10—H10C0.9600
C3—C41.397 (3)
C2—N1—N2109.32 (19)C4—C5—H5B109.5
C2—N1—H1134 (4)H5A—C5—H5B109.5
N2—N1—H1117 (4)C4—C5—H5C109.5
C4—N2—N1108.3 (2)H5A—C5—H5C109.5
C4—N2—H2132 (4)H5B—C5—H5C109.5
N1—N2—H2119 (4)C7—C6—H6A109.5
C7—N3—N4112.30 (18)C7—C6—H6B109.5
C7—N3—H3127.5 (17)H6A—C6—H6B109.5
N4—N3—H3119.9 (17)C7—C6—H6C109.5
C9—N4—N3105.01 (18)H6A—C6—H6C109.5
C2—C1—H1A109.5H6B—C6—H6C109.5
C2—C1—H1B109.5N3—C7—C8107.43 (19)
H1A—C1—H1B109.5N3—C7—C6121.0 (2)
C2—C1—H1C109.5C8—C7—C6131.5 (2)
H1A—C1—H1C109.5C7—C8—C9104.47 (19)
H1B—C1—H1C109.5C7—C8—C3126.7 (2)
N1—C2—C3108.5 (2)C9—C8—C3128.66 (19)
N1—C2—C1121.2 (2)N4—C9—C8110.78 (19)
C3—C2—C1130.3 (2)N4—C9—C10120.1 (2)
C4—C3—C2104.54 (19)C8—C9—C10129.1 (2)
C4—C3—C8129.9 (2)C9—C10—H10A109.5
C2—C3—C8125.59 (19)C9—C10—H10B109.5
N2—C4—C3109.4 (2)H10A—C10—H10B109.5
N2—C4—C5121.4 (2)C9—C10—H10C109.5
C3—C4—C5129.2 (2)H10A—C10—H10C109.5
C4—C5—H5A109.5H10B—C10—H10C109.5
C2—N1—N2—C40.3 (3)N4—N3—C7—C6179.7 (2)
C7—N3—N4—C90.4 (3)N3—C7—C8—C90.4 (2)
N2—N1—C2—C30.4 (3)C6—C7—C8—C9179.4 (3)
N2—N1—C2—C1178.0 (2)N3—C7—C8—C3176.4 (2)
N1—C2—C3—C40.3 (3)C6—C7—C8—C34.5 (4)
C1—C2—C3—C4177.7 (3)C4—C3—C8—C7122.9 (3)
N1—C2—C3—C8179.9 (2)C2—C3—C8—C756.6 (3)
C1—C2—C3—C82.7 (4)C4—C3—C8—C962.0 (3)
N1—N2—C4—C30.1 (3)C2—C3—C8—C9118.5 (3)
N1—N2—C4—C5179.5 (2)N3—N4—C9—C80.2 (3)
C2—C3—C4—N20.2 (3)N3—N4—C9—C10179.7 (2)
C8—C3—C4—N2179.7 (2)C7—C8—C9—N40.1 (3)
C2—C3—C4—C5179.3 (3)C3—C8—C9—N4176.0 (2)
C8—C3—C4—C50.3 (4)C7—C8—C9—C10179.3 (3)
N4—N3—C7—C80.5 (3)C3—C8—C9—C103.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···N40.84 (1)1.95 (1)2.791 (2)175 (2)
N3—H3···O1i0.88 (3)1.96 (3)2.827 (2)169 (2)
N2—H2···N2ii0.91 (5)2.23 (5)3.015 (4)144 (5)
N1—H1···N1iii0.91 (5)1.98 (5)2.862 (4)164 (5)
Symmetry codes: (i) y+7/4, x+1/4, z1/4; (ii) y+1/4, x1/4, z+7/4; (iii) x+2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC10H14N4·0.5H2O
Mr199.26
Crystal system, space groupTetragonal, I41/acd
Temperature (K)293
a, c (Å)24.9060 (4), 14.9684 (2)
V3)9285.0 (2)
Z32
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.38 × 0.37
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.970, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
27495, 2050, 1480
Rint0.070
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.169, 1.10
No. of reflections2050
No. of parameters144
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···N40.844 (9)1.948 (10)2.791 (2)175 (2)
N3—H3···O1i0.88 (3)1.96 (3)2.827 (2)169 (2)
N2—H2···N2ii0.91 (5)2.23 (5)3.015 (4)144 (5)
N1—H1···N1iii0.91 (5)1.98 (5)2.862 (4)164 (5)
Symmetry codes: (i) y+7/4, x+1/4, z1/4; (ii) y+1/4, x1/4, z+7/4; (iii) x+2, y+3/2, z.
 

Acknowledgements

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the Innovation Project of Zhejiang A & F University.

References

First citationBoldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Polyhedron, 20, 887–897.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. P. & Kitagawa, S. (2008). J. Am. Chem. Soc. 130, 907–917.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds