organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12-(4-Meth­­oxy­benzo­yl)-2-methyl­benzo[f]pyrido[1,2-a]indole-6,11-dione

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and cInstitute of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, Jiangsu, People's Republic of China
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 14 August 2012; accepted 24 September 2012; online 29 September 2012)

In the title compound, C25H17NO4, the indolizine fused naphthaquinone unit is approximately planar [r.m.s deviation = 0.0678 Å] and makes a dihedral angle of 57.82 (5)° with the benzene ring of the meth­oxy­benzene group. The naphtho­quinone O atoms deviate, in the same sense, from the mean plane of the fused six-membered rings by 0.2001 (14) and 0.0516 (14) Å. In the crystal there is ππ stacking of inversion-related pairs of mol­ecules [inter­planar spacing = 3.514 (2) Å].

Related literature

For general background to the applications and biological activity of indolizine derivatives, see: Švorc et al. (2009[Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2009). Acta Cryst. E65, o695-o696.]). For the synthesis of indolizines, see: Babaev et al. (2005[Babaev, E. V., Vasilevich, N. I. & Ivushkina, A. S. (2005). Beilstein J. Org. Chem. 1, 1-3.]), and for their use as inter­mediates in the synthesis of indolizidines, see: Kloubert et al. (2012[Kloubert, T., Kretschmer, R., Görls, H. & Westerhausen, M. (2012). Acta Cryst. E68, o2631-o2632.]). For the crystal structures of similar compounds, see: Liu et al. (2011[Liu, Y., Wang, S.-H., Shen, S.-R. & Yang, Z.-H. (2011). Acta Cryst. E67, o1550.]); Ramesh et al. (2009[Ramesh, P., Sundaresan, S. S., Lakshmi, N. V., Perumal, P. T. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o994.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H17NO4

  • Mr = 395.40

  • Monoclinic, P 21 /c

  • a = 8.1346 (3) Å

  • b = 23.2926 (8) Å

  • c = 10.1505 (3) Å

  • β = 97.304 (2)°

  • V = 1907.67 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.982

  • 18096 measured reflections

  • 3852 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.04

  • 3852 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indolizines, the nitrogen containing heterocyclic systems, are widely distributed in nature. In particular, indolizine derivatives are an important class of heterocyclic bioactive compounds with a wide range of applications, such as pharmaceutical drugs, potential central nervous system depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes. Polycyclic indolizine derivatives have been found to have high-efficiency long-wavelength fluorescence quantum yield. Several polyhydroxylated indolizines are interesting as inhibitors of glycosides. They have also been tested as antimycobacterial agents against mycobacterial tuberculosis, for the treatment of angina pectoris, aromatase inhibitory, antiinflammatory, antiviral, analgesic and antitumor activities (Švorc et al., 2009). Moreover, the application of indolizines themselves are as intermediates in the synthesis of indolizidines (Kloubert et al., 2012) and many natural alkaloids contain in their structure a saturated (swainsonine) or aromatic (camptothecin) indolizine moiety (Babaev et al., 2005). The benzo[f]pyrido[1,2-a]indole-6,11-diones are benzo-fused indolizines, and occur in several marine alkaloids (Liu et al., 2011). The synthesis of these compounds has drawn much research interest. In view of their importance, the crystal structure determination of the title compound was carried out and results are presented herein.

In the title compound, C25H17NO4, the fused naphthaquione–indolizine ring system (N/C1–C16/O1/O2) is approximately planar with a maximum deviation of 0.1193 (14) Å for atom C11 and -0.2001 (14) Å for atom O1, respectively. The fused ring systems make a dihedral angle of 57.82 (5)° with that of benzene ring of the methoxybenzene group. The torsion angles C11—C18—C19—C20 = -21.0 (2)° and C11—C18—C19—C24 = 161.52 (16)° also indicate that the aromatic ring is at different plane from the plane of the fused ring systems. The sum of bond angles around N [359.99 (43)°] indicates that atom N exhibits sp2 hybridization. The geometric parameters of the title compound (Fig. 1) agree well with a reported similar structure 12-benzoyl-2-methylnaphtho[2,3-b]-indolizine-6,11-dione [Liu et al., 2011]. The O2 atom is essentially coplanar with the ring, deviating by only -0.0516 (14) Å, while O1 deviates by -0.2001 (14) Å from the best-fit plane. The discrepancy in bond length is also observed for C9—C11 [1.400 (2) Å], which is slightly shorter than the average of 1.434 (1) Å calculated for indoles in the Cambridge Structure Database (Allen et al., 1987).

The endocyclic angle at C7 is contracted to 114.76 (15)° while those at C8 is expanded to 125.71 (15)°, respectively. This would appear to be a real effect caused by the fusion of the indolizine with naphthalene ring resulting an angular distortion as observed in the reported structure 3'-benzyloxy-3-hydroxy-3,3'-bi-1H-indole-2,2'(3H,3'H)-dione monohydrate [Ramesh et al., 2009]. The widening of exocyclic angle O4—C22—C21 [125.05 (16)°] from the normal value of 120°, may be due to steric repulsion between atoms H21 and H25C (H21—H25C = 2.367 Å). In the crystal, there is π-π stacking of inversion-related pairs of molecules [interplanar spacing = 3.514 (2) Å].

Related literature top

For general background to the applications and biological activity of indolizine derivatives, see: Švorc et al. (2009). For the synthesis of indolizines, see: Babaev et al. (2005), and for their use as intermediates in the synthesis of indolizidines, see: Kloubert et al. (2012). For the crystal structures of similar compounds, see: Liu et al. (2011); Ramesh et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-Methyl pyridine (3.0 mmol), 2-bromo-1-(4-methoxyphenyl)ethanone (1.0 mmol), 1,4-naphthaquionone (1.0 mmol), and hydrated copper chloride (0.1 mmol) were mixed in 15 ml of CH3CN and heated to reflux for 12 h. After completion of the reaction, the reaction mixture was separated by silica gel column chromatography to afford the title compound (yield: 91%).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms: C—H =0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) =KUeq (parent C-atom), where K=1.5 for CH3 H atoms and K=1.2 for CH H-atoms.

Structure description top

Indolizines, the nitrogen containing heterocyclic systems, are widely distributed in nature. In particular, indolizine derivatives are an important class of heterocyclic bioactive compounds with a wide range of applications, such as pharmaceutical drugs, potential central nervous system depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes. Polycyclic indolizine derivatives have been found to have high-efficiency long-wavelength fluorescence quantum yield. Several polyhydroxylated indolizines are interesting as inhibitors of glycosides. They have also been tested as antimycobacterial agents against mycobacterial tuberculosis, for the treatment of angina pectoris, aromatase inhibitory, antiinflammatory, antiviral, analgesic and antitumor activities (Švorc et al., 2009). Moreover, the application of indolizines themselves are as intermediates in the synthesis of indolizidines (Kloubert et al., 2012) and many natural alkaloids contain in their structure a saturated (swainsonine) or aromatic (camptothecin) indolizine moiety (Babaev et al., 2005). The benzo[f]pyrido[1,2-a]indole-6,11-diones are benzo-fused indolizines, and occur in several marine alkaloids (Liu et al., 2011). The synthesis of these compounds has drawn much research interest. In view of their importance, the crystal structure determination of the title compound was carried out and results are presented herein.

In the title compound, C25H17NO4, the fused naphthaquione–indolizine ring system (N/C1–C16/O1/O2) is approximately planar with a maximum deviation of 0.1193 (14) Å for atom C11 and -0.2001 (14) Å for atom O1, respectively. The fused ring systems make a dihedral angle of 57.82 (5)° with that of benzene ring of the methoxybenzene group. The torsion angles C11—C18—C19—C20 = -21.0 (2)° and C11—C18—C19—C24 = 161.52 (16)° also indicate that the aromatic ring is at different plane from the plane of the fused ring systems. The sum of bond angles around N [359.99 (43)°] indicates that atom N exhibits sp2 hybridization. The geometric parameters of the title compound (Fig. 1) agree well with a reported similar structure 12-benzoyl-2-methylnaphtho[2,3-b]-indolizine-6,11-dione [Liu et al., 2011]. The O2 atom is essentially coplanar with the ring, deviating by only -0.0516 (14) Å, while O1 deviates by -0.2001 (14) Å from the best-fit plane. The discrepancy in bond length is also observed for C9—C11 [1.400 (2) Å], which is slightly shorter than the average of 1.434 (1) Å calculated for indoles in the Cambridge Structure Database (Allen et al., 1987).

The endocyclic angle at C7 is contracted to 114.76 (15)° while those at C8 is expanded to 125.71 (15)°, respectively. This would appear to be a real effect caused by the fusion of the indolizine with naphthalene ring resulting an angular distortion as observed in the reported structure 3'-benzyloxy-3-hydroxy-3,3'-bi-1H-indole-2,2'(3H,3'H)-dione monohydrate [Ramesh et al., 2009]. The widening of exocyclic angle O4—C22—C21 [125.05 (16)°] from the normal value of 120°, may be due to steric repulsion between atoms H21 and H25C (H21—H25C = 2.367 Å). In the crystal, there is π-π stacking of inversion-related pairs of molecules [interplanar spacing = 3.514 (2) Å].

For general background to the applications and biological activity of indolizine derivatives, see: Švorc et al. (2009). For the synthesis of indolizines, see: Babaev et al. (2005), and for their use as intermediates in the synthesis of indolizidines, see: Kloubert et al. (2012). For the crystal structures of similar compounds, see: Liu et al. (2011); Ramesh et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed approximately down the bisector of the a and c axes.
12-(4-Methoxybenzoyl)-2-methylbenzo[f]pyrido[1,2-a]indole- 6,11-dione top
Crystal data top
C25H17NO4F(000) = 824
Mr = 395.40Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5015 reflections
a = 8.1346 (3) Åθ = 2.2–26.3°
b = 23.2926 (8) ŵ = 0.09 mm1
c = 10.1505 (3) ÅT = 293 K
β = 97.304 (2)°Block, brown
V = 1907.67 (11) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3852 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 26.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.972, Tmax = 0.982k = 2829
18096 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.4967P]
where P = (Fo2 + 2Fc2)/3
3852 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C25H17NO4V = 1907.67 (11) Å3
Mr = 395.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1346 (3) ŵ = 0.09 mm1
b = 23.2926 (8) ÅT = 293 K
c = 10.1505 (3) Å0.30 × 0.20 × 0.20 mm
β = 97.304 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3852 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2856 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.982Rint = 0.029
18096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3852 reflectionsΔρmin = 0.20 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.17994 (16)0.53308 (6)0.57068 (13)0.0388 (3)
O20.34773 (17)0.42161 (6)0.56349 (14)0.0628 (4)
C80.24197 (19)0.50723 (7)0.46488 (15)0.0376 (4)
C90.21764 (19)0.54500 (7)0.35825 (16)0.0383 (4)
O10.2104 (2)0.55356 (6)0.12630 (12)0.0652 (4)
C60.3785 (2)0.43608 (7)0.33619 (18)0.0435 (4)
C180.0992 (2)0.64903 (7)0.32447 (17)0.0439 (4)
C190.2224 (2)0.67504 (7)0.24748 (16)0.0379 (4)
C10.3460 (2)0.47115 (7)0.22307 (18)0.0443 (4)
C210.5041 (2)0.68874 (7)0.20229 (17)0.0431 (4)
H210.61650.68060.22190.052*
O30.03169 (17)0.67344 (7)0.33481 (16)0.0714 (5)
C160.1778 (2)0.51365 (9)0.69868 (16)0.0477 (4)
H160.21950.47760.72380.057*
C100.2554 (2)0.52654 (7)0.22716 (17)0.0444 (4)
C120.11594 (19)0.58666 (7)0.53067 (16)0.0399 (4)
C70.3231 (2)0.45262 (8)0.46517 (17)0.0426 (4)
C140.0491 (2)0.60280 (9)0.75177 (18)0.0509 (5)
C230.2821 (2)0.74026 (8)0.0772 (2)0.0539 (5)
H230.24530.76620.01010.065*
O40.54786 (16)0.75454 (6)0.02430 (14)0.0634 (4)
C200.3900 (2)0.66254 (7)0.27206 (16)0.0409 (4)
H200.42650.63580.33730.049*
C130.0496 (2)0.62101 (8)0.62437 (18)0.0464 (4)
H130.00520.65670.59910.056*
C220.4494 (2)0.72723 (7)0.10299 (17)0.0443 (4)
C20.3967 (2)0.45322 (9)0.1042 (2)0.0553 (5)
H20.37320.47580.02850.066*
C110.14110 (19)0.59490 (7)0.39734 (16)0.0403 (4)
C240.1712 (2)0.71529 (8)0.14967 (18)0.0483 (4)
H240.05980.72530.13340.058*
C150.1142 (2)0.54769 (9)0.78676 (18)0.0539 (5)
H150.11290.53460.87320.065*
C40.5135 (3)0.36798 (9)0.2080 (2)0.0644 (6)
H40.57020.33350.20300.077*
C50.4614 (2)0.38467 (8)0.3266 (2)0.0538 (5)
H50.48240.36110.40080.065*
C170.0160 (3)0.63983 (11)0.8546 (2)0.0731 (7)
H17A0.00580.61970.93790.110*
H17B0.13050.64860.82700.110*
H17C0.04670.67480.86490.110*
C30.4816 (3)0.40227 (9)0.0974 (2)0.0646 (6)
H30.51740.39110.01780.077*
C250.7210 (2)0.74482 (11)0.0475 (3)0.0754 (7)
H25A0.77480.76660.01490.113*
H25B0.74300.70470.03680.113*
H25C0.76240.75650.13620.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0378 (7)0.0458 (8)0.0328 (7)0.0053 (6)0.0042 (6)0.0017 (6)
O20.0696 (9)0.0613 (9)0.0577 (8)0.0171 (7)0.0086 (7)0.0195 (7)
C80.0367 (8)0.0409 (9)0.0352 (9)0.0036 (7)0.0045 (7)0.0012 (7)
C90.0375 (8)0.0406 (9)0.0370 (9)0.0022 (7)0.0061 (7)0.0005 (7)
O10.1040 (11)0.0559 (8)0.0363 (7)0.0112 (8)0.0117 (7)0.0047 (6)
C60.0366 (9)0.0411 (10)0.0529 (11)0.0042 (7)0.0058 (8)0.0034 (8)
C180.0452 (10)0.0427 (10)0.0444 (10)0.0067 (8)0.0081 (8)0.0021 (8)
C190.0417 (9)0.0344 (9)0.0377 (9)0.0031 (7)0.0049 (7)0.0014 (7)
C10.0436 (9)0.0431 (10)0.0479 (10)0.0067 (7)0.0123 (8)0.0052 (8)
C210.0389 (9)0.0444 (10)0.0453 (10)0.0049 (7)0.0033 (7)0.0012 (8)
O30.0561 (8)0.0741 (10)0.0893 (11)0.0229 (7)0.0302 (8)0.0266 (8)
C160.0476 (10)0.0604 (12)0.0346 (9)0.0068 (9)0.0031 (8)0.0086 (9)
C100.0543 (10)0.0411 (10)0.0388 (10)0.0048 (8)0.0097 (8)0.0002 (8)
C120.0353 (8)0.0445 (9)0.0402 (9)0.0055 (7)0.0056 (7)0.0012 (8)
C70.0374 (9)0.0446 (10)0.0447 (10)0.0034 (7)0.0014 (7)0.0053 (8)
C140.0436 (10)0.0670 (13)0.0433 (10)0.0125 (9)0.0095 (8)0.0108 (9)
C230.0517 (11)0.0515 (11)0.0579 (12)0.0064 (9)0.0044 (9)0.0211 (9)
O40.0549 (8)0.0670 (9)0.0710 (9)0.0051 (7)0.0179 (7)0.0200 (7)
C200.0460 (9)0.0394 (9)0.0365 (9)0.0073 (7)0.0017 (7)0.0036 (7)
C130.0422 (9)0.0507 (10)0.0473 (10)0.0040 (8)0.0102 (8)0.0081 (8)
C220.0485 (10)0.0394 (9)0.0462 (10)0.0028 (8)0.0108 (8)0.0006 (8)
C20.0608 (12)0.0542 (11)0.0543 (11)0.0064 (9)0.0202 (9)0.0091 (9)
C110.0399 (9)0.0423 (9)0.0395 (9)0.0012 (7)0.0079 (7)0.0011 (7)
C240.0383 (9)0.0473 (10)0.0582 (11)0.0071 (8)0.0024 (8)0.0112 (9)
C150.0534 (11)0.0751 (14)0.0335 (9)0.0127 (10)0.0073 (8)0.0006 (9)
C40.0555 (12)0.0530 (12)0.0865 (16)0.0040 (10)0.0153 (11)0.0176 (12)
C50.0478 (10)0.0449 (10)0.0682 (13)0.0010 (8)0.0054 (9)0.0037 (9)
C170.0779 (15)0.0912 (17)0.0537 (12)0.0094 (13)0.0219 (11)0.0256 (12)
C30.0655 (13)0.0615 (13)0.0712 (14)0.0054 (11)0.0266 (11)0.0222 (12)
C250.0506 (12)0.0877 (17)0.0921 (17)0.0101 (11)0.0251 (12)0.0067 (14)
Geometric parameters (Å, º) top
N—C161.378 (2)C14—C131.361 (3)
N—C81.381 (2)C14—C151.416 (3)
N—C121.393 (2)C14—C171.502 (3)
O2—C71.228 (2)C23—C241.365 (2)
C8—C91.389 (2)C23—C221.386 (3)
C8—C71.433 (2)C23—H230.9300
C9—C111.400 (2)O4—C221.359 (2)
C9—C101.467 (2)O4—C251.416 (2)
O1—C101.218 (2)C20—H200.9300
C6—C51.384 (2)C13—H130.9300
C6—C11.407 (2)C2—C31.379 (3)
C6—C71.489 (2)C2—H20.9300
C18—O31.223 (2)C24—H240.9300
C18—C191.477 (2)C15—H150.9300
C18—C111.479 (2)C4—C31.375 (3)
C19—C201.385 (2)C4—C51.382 (3)
C19—C241.390 (2)C4—H40.9300
C1—C21.388 (2)C5—H50.9300
C1—C101.489 (2)C17—H17A0.9600
C21—C201.379 (2)C17—H17B0.9600
C21—C221.380 (2)C17—H17C0.9600
C21—H210.9300C3—H30.9300
C16—C151.347 (3)C25—H25A0.9600
C16—H160.9300C25—H25B0.9600
C12—C131.402 (2)C25—H25C0.9600
C12—C111.407 (2)
C16—N—C8129.76 (15)C21—C20—C19121.72 (15)
C16—N—C12121.34 (15)C21—C20—H20119.1
C8—N—C12108.89 (13)C19—C20—H20119.1
N—C8—C9107.44 (14)C14—C13—C12120.95 (18)
N—C8—C7126.80 (14)C14—C13—H13119.5
C9—C8—C7125.71 (15)C12—C13—H13119.5
C8—C9—C11109.24 (14)O4—C22—C21125.05 (16)
C8—C9—C10119.70 (15)O4—C22—C23115.09 (16)
C11—C9—C10130.71 (15)C21—C22—C23119.86 (16)
C5—C6—C1119.22 (17)C3—C2—C1120.6 (2)
C5—C6—C7119.38 (17)C3—C2—H2119.7
C1—C6—C7121.39 (15)C1—C2—H2119.7
O3—C18—C19120.77 (16)C9—C11—C12106.48 (14)
O3—C18—C11120.06 (16)C9—C11—C18130.43 (15)
C19—C18—C11119.03 (14)C12—C11—C18122.99 (15)
C20—C19—C24117.97 (15)C23—C24—C19120.92 (16)
C20—C19—C18122.49 (15)C23—C24—H24119.5
C24—C19—C18119.50 (15)C19—C24—H24119.5
C2—C1—C6119.25 (17)C16—C15—C14122.00 (17)
C2—C1—C10119.19 (17)C16—C15—H15119.0
C6—C1—C10121.54 (15)C14—C15—H15119.0
C20—C21—C22119.14 (16)C3—C4—C5120.08 (19)
C20—C21—H21120.4C3—C4—H4120.0
C22—C21—H21120.4C5—C4—H4120.0
C15—C16—N119.00 (18)C4—C5—C6120.7 (2)
C15—C16—H16120.5C4—C5—H5119.6
N—C16—H16120.5C6—C5—H5119.6
O1—C10—C9122.39 (16)C14—C17—H17A109.5
O1—C10—C1121.42 (16)C14—C17—H17B109.5
C9—C10—C1116.13 (15)H17A—C17—H17B109.5
N—C12—C13118.38 (15)C14—C17—H17C109.5
N—C12—C11107.93 (14)H17A—C17—H17C109.5
C13—C12—C11133.63 (17)H17B—C17—H17C109.5
O2—C7—C8123.46 (17)C4—C3—C2120.1 (2)
O2—C7—C6121.77 (16)C4—C3—H3119.9
C8—C7—C6114.76 (15)C2—C3—H3119.9
C13—C14—C15118.33 (17)O4—C25—H25A109.5
C13—C14—C17121.7 (2)O4—C25—H25B109.5
C15—C14—C17119.98 (18)H25A—C25—H25B109.5
C24—C23—C22120.34 (17)O4—C25—H25C109.5
C24—C23—H23119.8H25A—C25—H25C109.5
C22—C23—H23119.8H25B—C25—H25C109.5
C22—O4—C25118.39 (16)
C16—N—C8—C9178.53 (15)C22—C21—C20—C191.8 (3)
C12—N—C8—C90.38 (17)C24—C19—C20—C210.2 (3)
C16—N—C8—C71.0 (3)C18—C19—C20—C21177.69 (16)
C12—N—C8—C7177.96 (15)C15—C14—C13—C121.4 (3)
N—C8—C9—C110.40 (18)C17—C14—C13—C12177.84 (17)
C7—C8—C9—C11177.21 (15)N—C12—C13—C140.7 (2)
N—C8—C9—C10173.46 (14)C11—C12—C13—C14176.11 (17)
C7—C8—C9—C108.9 (2)C25—O4—C22—C212.3 (3)
O3—C18—C19—C20154.62 (18)C25—O4—C22—C23178.04 (18)
C11—C18—C19—C2021.0 (2)C20—C21—C22—O4177.84 (17)
O3—C18—C19—C2422.9 (3)C20—C21—C22—C231.8 (3)
C11—C18—C19—C24161.52 (16)C24—C23—C22—O4179.80 (17)
C5—C6—C1—C20.4 (3)C24—C23—C22—C210.1 (3)
C7—C6—C1—C2178.47 (16)C6—C1—C2—C31.5 (3)
C5—C6—C1—C10179.22 (16)C10—C1—C2—C3179.66 (17)
C7—C6—C1—C100.3 (2)C8—C9—C11—C121.00 (18)
C8—N—C16—C15177.94 (16)C10—C9—C11—C12171.95 (17)
C12—N—C16—C150.9 (2)C8—C9—C11—C18175.43 (16)
C8—C9—C10—O1167.00 (17)C10—C9—C11—C1811.6 (3)
C11—C9—C10—O15.3 (3)N—C12—C11—C91.22 (18)
C8—C9—C10—C110.4 (2)C13—C12—C11—C9178.26 (17)
C11—C9—C10—C1177.31 (16)N—C12—C11—C18175.55 (14)
C2—C1—C10—O17.4 (3)C13—C12—C11—C181.5 (3)
C6—C1—C10—O1171.35 (17)O3—C18—C11—C9140.6 (2)
C2—C1—C10—C9175.19 (16)C19—C18—C11—C943.8 (3)
C6—C1—C10—C96.0 (2)O3—C18—C11—C1243.5 (3)
C16—N—C12—C130.5 (2)C19—C18—C11—C12132.13 (17)
C8—N—C12—C13178.57 (14)C22—C23—C24—C192.1 (3)
C16—N—C12—C11178.02 (14)C20—C19—C24—C232.1 (3)
C8—N—C12—C111.00 (17)C18—C19—C24—C23179.74 (17)
N—C8—C7—O20.2 (3)N—C16—C15—C140.2 (3)
C9—C8—C7—O2176.99 (17)C13—C14—C15—C161.0 (3)
N—C8—C7—C6179.40 (14)C17—C14—C15—C16178.26 (18)
C9—C8—C7—C62.2 (2)C3—C4—C5—C60.7 (3)
C5—C6—C7—O20.6 (3)C1—C6—C5—C40.7 (3)
C1—C6—C7—O2178.29 (16)C7—C6—C5—C4179.60 (16)
C5—C6—C7—C8178.63 (15)C5—C4—C3—C20.4 (3)
C1—C6—C7—C82.5 (2)C1—C2—C3—C41.5 (3)

Experimental details

Crystal data
Chemical formulaC25H17NO4
Mr395.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1346 (3), 23.2926 (8), 10.1505 (3)
β (°) 97.304 (2)
V3)1907.67 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.972, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
18096, 3852, 2856
Rint0.029
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.04
No. of reflections3852
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBabaev, E. V., Vasilevich, N. I. & Ivushkina, A. S. (2005). Beilstein J. Org. Chem. 1, 1–3.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKloubert, T., Kretschmer, R., Görls, H. & Westerhausen, M. (2012). Acta Cryst. E68, o2631–o2632.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Wang, S.-H., Shen, S.-R. & Yang, Z.-H. (2011). Acta Cryst. E67, o1550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamesh, P., Sundaresan, S. S., Lakshmi, N. V., Perumal, P. T. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠvorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2009). Acta Cryst. E65, o695–o696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds