organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[1-(1H-Pyrrol-2-yl)ethyl­­idene]aniline

aCollege of Chemistry and Chemical Engineering, Xi'an ShiYou University, Xi'an, Shaanxi 710065, People's Republic of China
*Correspondence e-mail: subiyun@xsyu.edu.cn

(Received 6 August 2012; accepted 2 September 2012; online 8 September 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H12N2, in which the pyrrole and benzene rings form dihedral angles of 72.37 (7) and 82.34 (8)°. The imino N—C bond lengths in the two mol­ecules are equal [1.286 (2) Å] and indicate C=N character. In the crystal, each mol­ecule forms a dimer with an inversion-related mol­ecule through a pair of classical N—H⋯N hydrogen bonds.

Related literature

For general background to the imino­pyrrole unit, see: Small et al. (1998[Small, B. L., Bennett, A. M. A. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 4049-4050.]); Su et al. (2009a[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429-4440.],b[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051-1057.]); Britovsek et al. (2003[Britovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454-3465.]); Dawson et al. (2000[Dawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. pp. 459-466.]). For the pyrrole diimine unit, see: Matsuo et al. (2001[Matsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510-3518.]) and for the pyrrole monoimine unit, see: He et al. (2009[He, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713-721.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2

  • Mr = 184.24

  • Triclinic, [P \overline 1]

  • a = 8.2236 (14) Å

  • b = 11.3306 (19) Å

  • c = 11.913 (2) Å

  • α = 95.984 (3)°

  • β = 93.202 (3)°

  • γ = 109.274 (3)°

  • V = 1037.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.37 × 0.25 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.987

  • 5277 measured reflections

  • 3655 independent reflections

  • 2567 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.10

  • 3655 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.38 3.150 (2) 150
N3—H3A⋯N4ii 0.86 2.27 3.065 (2) 153
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, the bis(imino)pyridine incorporated late transition metal catalysts have received considerable attention because of their antioxidant property and outstanding activity for olefin polymerization (Small et al., 1998; Su et al., 2009a,b). As the five-memberd ring substitute of pyridine six-memberd ring (Matsuo et al., 2001; He et al., 2009), pyrrole was frequently introduced into the skeleton of bis(imino)pyridine ligand to design new ligand and corresponding metal complexes (Britovsek et al., 2003; Dawson et al., 2000). Bis(imino)pyrrole was usually prepared from Schiff base condensation of 2,5-diacetylpyrrole and the aromatic amine (Matsuo et al., 2001). As a contribution to this research field, we report herein the synthesis of mono(imino)pyrrole from 2-acetyl pyrrole and aromatic anime, as well as the crystal structure of the title compound 2-(1-phenyliminoethyl)pyrrole.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent molecules A and B. In each molecule the pyrrole ring and benzene ring are essentially perpendicular, with dihedral angles of 72.37 (7)° and 82.34 (8)° respectively. The benzene ring of molecules A are nearly parallel with the benzene ring of molecules B with dihedral angle of 14.33 (14)°, but pyrrole ring of molecules A forms a comparative large 39.42 (9)° dihedral angle with the pyrrole ring of molecules B. On the whole, bond lengths and angles in both molecules are equal in the s.u. range. The crystal packing is stabilized by N–H···N classical intermolecular hydrogen bonds (Table 1, Fig. 2).

Related literature top

For general background to the iminopyrrole unit, see: Small et al. (1998); Su et al. (2009a,b); Britovsek et al. (2003); Dawson et al. (2000). For the pyrrole diimine unit, see: Matsuo et al. (2001) and for the pyrrole monoimine unit, see: He et al. (2009).

Experimental top

The 2-acetyl pyrrole (0.1313 g, 1.20 mmol), aniline (0.1118 g, 1.20 mmol) were placed in a 50 ml flask, after a few drops of acetic acid were added in, the mixture was subjected to radiation in a 800 W microwave oven for 2 min and 3 min on a medium-heat setting. The reaction was monitored by TLC, and the crude product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate, 5:1 v/v), the colourless or light yellow crystals of the title compound were at last obtained by recrystallization from ethanol (yield 0.063 g, 28.4%). M.p. 405.25-406.85 K. The purity and the composition of the compound were checked and characterized by IR spectrum, 1H NMR spectrum, mass spectrum, as well as elemental analysis. IR (KBr): νCN 1653 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.33 (t, H, benzene ring aromatic H), 7.15 (t, 2H, benzene ring aromatic H), 7.02 (d, 2H, benzene ring aromatic H), 6.97 (t, 1H, pyrrole ring aromatic H), 6.33 (d, 1H, pyrrole ring aromatic H), 6.10 (d, 1H, pyrrole ring aromatic H), 2.03 (s, 3H, -NC(CH3)-). MS (EI): m/z 184 (M). Anal. Calcd for C12H12N2: C, 78.23; H, 6.57; N, 15.21. Found: C, 78.50; H, 7.01; N, 14.96.

Plate like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with C–H = 0.93-0.96Å, N–H = 0.86Å, and with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

In recent years, the bis(imino)pyridine incorporated late transition metal catalysts have received considerable attention because of their antioxidant property and outstanding activity for olefin polymerization (Small et al., 1998; Su et al., 2009a,b). As the five-memberd ring substitute of pyridine six-memberd ring (Matsuo et al., 2001; He et al., 2009), pyrrole was frequently introduced into the skeleton of bis(imino)pyridine ligand to design new ligand and corresponding metal complexes (Britovsek et al., 2003; Dawson et al., 2000). Bis(imino)pyrrole was usually prepared from Schiff base condensation of 2,5-diacetylpyrrole and the aromatic amine (Matsuo et al., 2001). As a contribution to this research field, we report herein the synthesis of mono(imino)pyrrole from 2-acetyl pyrrole and aromatic anime, as well as the crystal structure of the title compound 2-(1-phenyliminoethyl)pyrrole.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent molecules A and B. In each molecule the pyrrole ring and benzene ring are essentially perpendicular, with dihedral angles of 72.37 (7)° and 82.34 (8)° respectively. The benzene ring of molecules A are nearly parallel with the benzene ring of molecules B with dihedral angle of 14.33 (14)°, but pyrrole ring of molecules A forms a comparative large 39.42 (9)° dihedral angle with the pyrrole ring of molecules B. On the whole, bond lengths and angles in both molecules are equal in the s.u. range. The crystal packing is stabilized by N–H···N classical intermolecular hydrogen bonds (Table 1, Fig. 2).

For general background to the iminopyrrole unit, see: Small et al. (1998); Su et al. (2009a,b); Britovsek et al. (2003); Dawson et al. (2000). For the pyrrole diimine unit, see: Matsuo et al. (2001) and for the pyrrole monoimine unit, see: He et al. (2009).

Computing details top

Data collection: APEX2 (Bruker,2008); cell refinement: SAINT (Bruker,2008); data reduction: SAINT (Bruker,2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Two independent molecules in the asymmetric unit of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-[1-(1H-Pyrrol-2-yl)ethylidene]aniline top
Crystal data top
C12H12N2Z = 4
Mr = 184.24F(000) = 392
Triclinic, P1Dx = 1.180 Mg m3
Hall symbol: -P 1Melting point = 405.25–406.85 K
a = 8.2236 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3306 (19) ÅCell parameters from 1351 reflections
c = 11.913 (2) Åθ = 2.4–25.1°
α = 95.984 (3)°µ = 0.07 mm1
β = 93.202 (3)°T = 296 K
γ = 109.274 (3)°Block, colourless
V = 1037.3 (3) Å30.37 × 0.25 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3655 independent reflections
Radiation source: fine-focus sealed tube2567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.974, Tmax = 0.987k = 913
5277 measured reflectionsl = 1411
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3655 reflectionsΔρmax = 0.20 e Å3
256 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (5)
Crystal data top
C12H12N2γ = 109.274 (3)°
Mr = 184.24V = 1037.3 (3) Å3
Triclinic, P1Z = 4
a = 8.2236 (14) ÅMo Kα radiation
b = 11.3306 (19) ŵ = 0.07 mm1
c = 11.913 (2) ÅT = 296 K
α = 95.984 (3)°0.37 × 0.25 × 0.19 mm
β = 93.202 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2567 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.987Rint = 0.023
5277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
3655 reflectionsΔρmin = 0.13 e Å3
256 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1204 (2)1.17200 (13)0.61426 (13)0.0613 (4)
H1A0.06271.12630.55340.074*
N20.19520 (19)0.94813 (13)0.57233 (12)0.0557 (4)
N30.38995 (19)0.64751 (14)0.01282 (12)0.0557 (4)
H3A0.44860.60070.03540.067*
N40.31361 (19)0.43111 (14)0.10218 (13)0.0569 (4)
C10.1184 (3)1.28776 (18)0.6531 (2)0.0780 (6)
H10.05391.33050.61920.094*
C20.2261 (3)1.3311 (2)0.7498 (2)0.0812 (7)
H20.25021.40890.79350.097*
C30.2940 (3)1.23792 (19)0.77152 (17)0.0699 (6)
H30.37101.24190.83320.084*
C40.2279 (2)1.13853 (16)0.68614 (15)0.0524 (5)
C50.2640 (2)1.02211 (16)0.66444 (14)0.0519 (5)
C60.3844 (3)0.9990 (2)0.75197 (17)0.0783 (6)
H6A0.32160.96650.81400.117*
H6B0.47571.07670.77930.117*
H6C0.43310.93890.71870.117*
C70.2301 (2)0.83354 (16)0.54888 (15)0.0525 (5)
C80.1630 (3)0.73360 (18)0.60871 (18)0.0726 (6)
H80.09760.74180.66840.087*
C90.1917 (3)0.62193 (19)0.5811 (2)0.0814 (7)
H90.14570.55530.62240.098*
C100.2873 (3)0.6075 (2)0.4936 (2)0.0781 (6)
H100.30720.53190.47560.094*
C110.3536 (3)0.7066 (2)0.43257 (19)0.0772 (6)
H110.41840.69800.37270.093*
C120.3241 (3)0.81884 (18)0.46002 (17)0.0664 (5)
H120.36830.88500.41790.080*
C130.4041 (3)0.76033 (19)0.04693 (17)0.0651 (5)
H130.47830.80000.09820.078*
C140.2908 (3)0.8061 (2)0.00674 (18)0.0698 (6)
H140.27360.88200.00130.084*
C150.2060 (3)0.71803 (18)0.07579 (17)0.0627 (5)
H150.12180.72490.12250.075*
C160.2679 (2)0.61897 (16)0.06320 (14)0.0507 (4)
C170.2239 (2)0.50444 (16)0.11674 (14)0.0503 (4)
C180.0726 (3)0.47986 (18)0.18618 (16)0.0656 (5)
H18A0.02590.41570.14460.098*
H18B0.04620.55600.20250.098*
H18C0.10060.45220.25590.098*
C190.2680 (2)0.31984 (17)0.15675 (16)0.0561 (5)
C200.3454 (3)0.3213 (2)0.26340 (17)0.0708 (6)
H200.42380.39610.30140.085*
C210.3063 (3)0.2120 (3)0.3132 (2)0.0850 (7)
H210.35810.21360.38510.102*
C220.1926 (3)0.1014 (2)0.2583 (2)0.0873 (7)
H220.16630.02830.29270.105*
C230.1175 (3)0.0987 (2)0.1524 (2)0.0869 (7)
H230.04040.02330.11470.104*
C240.1551 (3)0.2071 (2)0.10094 (19)0.0730 (6)
H240.10420.20420.02850.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0669 (10)0.0474 (9)0.0668 (10)0.0195 (8)0.0074 (8)0.0011 (7)
N20.0601 (9)0.0484 (8)0.0593 (9)0.0191 (7)0.0030 (8)0.0102 (7)
N30.0549 (9)0.0621 (10)0.0579 (9)0.0271 (7)0.0110 (7)0.0155 (7)
N40.0530 (9)0.0618 (9)0.0627 (9)0.0236 (8)0.0156 (7)0.0197 (7)
C10.0800 (15)0.0517 (12)0.1002 (17)0.0274 (11)0.0127 (13)0.0059 (11)
C20.0714 (14)0.0616 (13)0.1009 (17)0.0213 (11)0.0030 (13)0.0218 (12)
C30.0603 (12)0.0749 (14)0.0679 (13)0.0209 (11)0.0028 (10)0.0087 (11)
C40.0485 (10)0.0518 (10)0.0555 (11)0.0150 (8)0.0054 (8)0.0070 (8)
C50.0497 (10)0.0543 (11)0.0520 (10)0.0155 (8)0.0071 (8)0.0141 (9)
C60.0889 (16)0.0862 (15)0.0665 (13)0.0400 (13)0.0089 (12)0.0134 (11)
C70.0519 (10)0.0509 (10)0.0556 (10)0.0183 (8)0.0031 (8)0.0092 (8)
C80.0878 (15)0.0604 (12)0.0798 (14)0.0309 (11)0.0335 (12)0.0210 (10)
C90.1039 (18)0.0574 (13)0.0943 (16)0.0343 (12)0.0340 (14)0.0233 (11)
C100.0847 (16)0.0590 (13)0.0935 (16)0.0301 (12)0.0134 (13)0.0005 (12)
C110.0715 (14)0.0779 (15)0.0800 (15)0.0235 (12)0.0208 (12)0.0006 (12)
C120.0682 (13)0.0598 (12)0.0673 (13)0.0145 (10)0.0140 (10)0.0109 (10)
C130.0620 (12)0.0718 (13)0.0703 (13)0.0282 (10)0.0107 (10)0.0277 (10)
C140.0744 (14)0.0705 (13)0.0780 (14)0.0382 (11)0.0132 (11)0.0213 (11)
C150.0641 (12)0.0711 (13)0.0634 (12)0.0339 (10)0.0145 (10)0.0142 (10)
C160.0457 (10)0.0615 (11)0.0473 (10)0.0208 (8)0.0051 (8)0.0084 (8)
C170.0472 (10)0.0583 (11)0.0457 (10)0.0188 (8)0.0033 (8)0.0055 (8)
C180.0647 (12)0.0725 (13)0.0672 (12)0.0293 (10)0.0216 (10)0.0146 (10)
C190.0474 (10)0.0639 (12)0.0649 (12)0.0248 (9)0.0165 (9)0.0176 (9)
C200.0742 (14)0.0770 (14)0.0659 (13)0.0280 (11)0.0095 (11)0.0200 (11)
C210.0857 (17)0.1045 (19)0.0803 (15)0.0435 (15)0.0171 (13)0.0376 (14)
C220.0747 (16)0.0889 (18)0.118 (2)0.0381 (14)0.0315 (15)0.0529 (16)
C230.0701 (15)0.0685 (14)0.121 (2)0.0177 (11)0.0122 (14)0.0271 (14)
C240.0618 (13)0.0717 (14)0.0846 (15)0.0196 (11)0.0001 (11)0.0195 (11)
Geometric parameters (Å, º) top
N1—C11.350 (2)C10—C111.378 (3)
N1—C41.365 (2)C10—H100.9300
N1—H1A0.8600C11—C121.381 (3)
N2—C51.286 (2)C11—H110.9300
N2—C71.423 (2)C12—H120.9300
N3—C131.352 (2)C13—C141.364 (3)
N3—C161.371 (2)C13—H130.9300
N3—H3A0.8600C14—C151.391 (3)
N4—C171.286 (2)C14—H140.9300
N4—C191.428 (2)C15—C161.376 (2)
C1—C21.355 (3)C15—H150.9300
C1—H10.9300C16—C171.453 (2)
C2—C31.387 (3)C17—C181.498 (2)
C2—H20.9300C18—H18A0.9600
C3—C41.376 (2)C18—H18B0.9600
C3—H30.9300C18—H18C0.9600
C4—C51.446 (2)C19—C241.381 (3)
C5—C61.500 (3)C19—C201.385 (3)
C6—H6A0.9600C20—C211.379 (3)
C6—H6B0.9600C20—H200.9300
C6—H6C0.9600C21—C221.363 (3)
C7—C121.373 (3)C21—H210.9300
C7—C81.376 (3)C22—C231.366 (3)
C8—C91.373 (3)C22—H220.9300
C8—H80.9300C23—C241.381 (3)
C9—C101.368 (3)C23—H230.9300
C9—H90.9300C24—H240.9300
C1—N1—C4109.71 (17)C12—C11—H11119.9
C1—N1—H1A125.1C7—C12—C11120.60 (19)
C4—N1—H1A125.1C7—C12—H12119.7
C5—N2—C7119.64 (15)C11—C12—H12119.7
C13—N3—C16109.70 (15)N3—C13—C14108.30 (18)
C13—N3—H3A125.2N3—C13—H13125.9
C16—N3—H3A125.2C14—C13—H13125.9
C17—N4—C19118.11 (15)C13—C14—C15107.20 (18)
N1—C1—C2108.44 (19)C13—C14—H14126.4
N1—C1—H1125.8C15—C14—H14126.4
C2—C1—H1125.8C16—C15—C14108.33 (17)
C1—C2—C3107.24 (18)C16—C15—H15125.8
C1—C2—H2126.4C14—C15—H15125.8
C3—C2—H2126.4N3—C16—C15106.47 (15)
C4—C3—C2108.29 (18)N3—C16—C17123.18 (15)
C4—C3—H3125.9C15—C16—C17130.35 (16)
C2—C3—H3125.9N4—C17—C16119.49 (16)
N1—C4—C3106.31 (16)N4—C17—C18124.21 (16)
N1—C4—C5122.82 (16)C16—C17—C18116.31 (15)
C3—C4—C5130.76 (18)C17—C18—H18A109.5
N2—C5—C4118.71 (16)C17—C18—H18B109.5
N2—C5—C6124.98 (17)H18A—C18—H18B109.5
C4—C5—C6116.29 (16)C17—C18—H18C109.5
C5—C6—H6A109.5H18A—C18—H18C109.5
C5—C6—H6B109.5H18B—C18—H18C109.5
H6A—C6—H6B109.5C24—C19—C20118.90 (19)
C5—C6—H6C109.5C24—C19—N4120.50 (18)
H6A—C6—H6C109.5C20—C19—N4120.46 (17)
H6B—C6—H6C109.5C21—C20—C19120.0 (2)
C12—C7—C8118.78 (17)C21—C20—H20120.0
C12—C7—N2119.48 (16)C19—C20—H20120.0
C8—C7—N2121.62 (17)C22—C21—C20120.7 (2)
C9—C8—C7120.61 (19)C22—C21—H21119.6
C9—C8—H8119.7C20—C21—H21119.6
C7—C8—H8119.7C23—C22—C21119.7 (2)
C10—C9—C8120.8 (2)C23—C22—H22120.2
C10—C9—H9119.6C21—C22—H22120.2
C8—C9—H9119.6C22—C23—C24120.5 (2)
C9—C10—C11119.0 (2)C22—C23—H23119.7
C9—C10—H10120.5C24—C23—H23119.7
C11—C10—H10120.5C19—C24—C23120.2 (2)
C10—C11—C12120.2 (2)C19—C24—H24119.9
C10—C11—H11119.9C23—C24—H24119.9
C4—N1—C1—C20.7 (2)C16—N3—C13—C140.1 (2)
N1—C1—C2—C30.9 (3)N3—C13—C14—C150.2 (2)
C1—C2—C3—C40.8 (2)C13—C14—C15—C160.2 (2)
C1—N1—C4—C30.2 (2)C13—N3—C16—C150.1 (2)
C1—N1—C4—C5176.80 (17)C13—N3—C16—C17179.24 (16)
C2—C3—C4—N10.3 (2)C14—C15—C16—N30.2 (2)
C2—C3—C4—C5175.84 (19)C14—C15—C16—C17179.27 (18)
C7—N2—C5—C4179.53 (15)C19—N4—C17—C16179.47 (15)
C7—N2—C5—C61.0 (3)C19—N4—C17—C180.9 (3)
N1—C4—C5—N21.6 (3)N3—C16—C17—N47.2 (3)
C3—C4—C5—N2174.05 (19)C15—C16—C17—N4171.75 (18)
N1—C4—C5—C6179.77 (17)N3—C16—C17—C18172.52 (16)
C3—C4—C5—C64.6 (3)C15—C16—C17—C188.6 (3)
C5—N2—C7—C12112.9 (2)C17—N4—C19—C2492.6 (2)
C5—N2—C7—C871.2 (2)C17—N4—C19—C2091.9 (2)
C12—C7—C8—C91.0 (3)C24—C19—C20—C211.4 (3)
N2—C7—C8—C9176.9 (2)N4—C19—C20—C21177.05 (18)
C7—C8—C9—C100.1 (4)C19—C20—C21—C220.4 (3)
C8—C9—C10—C110.5 (4)C20—C21—C22—C230.5 (4)
C9—C10—C11—C120.2 (3)C21—C22—C23—C240.4 (4)
C8—C7—C12—C111.2 (3)C20—C19—C24—C231.5 (3)
N2—C7—C12—C11177.28 (17)N4—C19—C24—C23177.15 (18)
C10—C11—C12—C70.6 (3)C22—C23—C24—C190.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.383.150 (2)150
N3—H3A···N4ii0.862.273.065 (2)153
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H12N2
Mr184.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2236 (14), 11.3306 (19), 11.913 (2)
α, β, γ (°)95.984 (3), 93.202 (3), 109.274 (3)
V3)1037.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.25 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.974, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5277, 3655, 2567
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.10
No. of reflections3655
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.13

Computer programs: APEX2 (Bruker,2008), SAINT (Bruker,2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.383.150 (2)149.6
N3—H3A···N4ii0.862.273.065 (2)153.2
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province (No. 2009JQ2006), the Scientific Research Plan Project of Shaanxi Education Department (12 J K0620) and the Important Science & Technology Specific Projects of the Innovative Program of Shaanxi Province (No. 2010ZDKG-46).

References

First citationBritovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454–3465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. pp. 459–466.  Web of Science CSD CrossRef Google Scholar
First citationHe, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713–721.  Web of Science CrossRef CAS Google Scholar
First citationMatsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510–3518.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmall, B. L., Bennett, A. M. A. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 4049–4050.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429–4440.  Web of Science CrossRef CAS Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051–1057.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds