organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3-Hy­dr­oxy­phen­yl)-3-[4-(tetra­dec­yl­­oxy)phen­yl]prop-2-en-1-one

aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 29 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title compound, C29H40O3, the enone moiety adopts an s-cis conformation. The dihedral angle between the benzene rings is 4.33 (5)° The least-squares mean line through the tetra­decyl side chain forms a dihedral angle of 83.99 (7)° with the normal to the attached benzene ring. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds involving the keto and the hy­droxy O atoms form ribbons along [-41-1]. The crystal structure also features C—H⋯π inter­actions.

Related literature

For the biological properties of chalcone derivatives, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]); Zhao et al. (2005[Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027-5029.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883-889.]). For related structures, see: Razak et al. (2009[Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1439-o1440.]); Ngaini et al. (2010[Ngaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o3275-o3276.], 2011[Ngaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2011). Acta Cryst. E67, o169-o170.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C29H40O3

  • Mr = 436.61

  • Triclinic, [P \overline 1]

  • a = 6.5138 (16) Å

  • b = 10.155 (2) Å

  • c = 19.264 (5) Å

  • α = 75.361 (6)°

  • β = 85.872 (7)°

  • γ = 83.013 (6)°

  • V = 1222.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.29 × 0.12 × 0.08 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.994

  • 26295 measured reflections

  • 7155 independent reflections

  • 5052 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.147

  • S = 0.95

  • 7155 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10–C15 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.93 (2) 1.80 (2) 2.7269 (14) 175.6 (18)
C29—H29A⋯O1ii 0.96 2.44 3.3589 (18) 160
C17—H17BCg1iii 0.97 2.73 3.6159 (16) 152
C28—H28ACg2iv 0.97 2.93 3.8481 (16) 159
Symmetry codes: (i) -x+3, -y, -z+1; (ii) x-4, y+1, z-1; (iii) x-1, y, z; (iv) x-3, y+1, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are highly reactive subtances of varied nature. They have been reported to possess many useful properties including anti-malarial (Xue et al., 2004), anti-cancer (Bhat et al., 2005), anti-inflammatory (Won et al., 2005), anti-platelet (Zhao et al., 2005) and anti-hyperglynemic (Satyanarayana et al., 2004) activities. Herein, we report the crystal structure of the title compound (Fig. 1).

The enone moiety (O2/C7–C9) adopts an s-cis conformation with the O2–C7–C8–C9 torsion angle of 0.64 (17)°. The dihedral angles between the least-square plane through the enone moiety and the benzene rings (C1–C6 and C10–C15) are 6.26 (7) and 4.65 (7)°, respectively. The dihedral angle between these benzene rings is 4.33 (5)°. The bond lengths observed in the title compound are comparable with the values previously reported values in the literature (Allen et al., 1987).

The short H8A···H15A (2.20 Å) and H8A···H1A (2.11 Å) contacts results in the widening of C8–C9–C10 (126.84 (11)°) and C1–C6–C7 (123.31 (10)°) angles, respectively. The geometric parameters are consistent to those observed in closely related structures (Razak et al., 2009; Ngaini et al., 2010; Ngaini et al., 2011).

The conformation throughout the zigzag alkoxyl tail is trans and is roughly coplanar with the attached benzene (C10–C15) ring as the torsion angle C16–O3–C13–C14 is 176.57 (10)°. However, only the aliphatic part (C16–C29) of the alkoxyl tail is constantly within the zigzag plane. The torsion angle of the aliphatic part deviate from the ideal value by 0.02 (10)–3.75 (10)° while the O3–C16–C17–C18 torsion angle shows value of 173.64 (9)°.

In the crystal packing (Fig. 2), the molecules are arranged in head-to-tail manner along the [-4 1 -1] direction. This arrangement is linked into extended chains through C29—H29···O1 intermolecular interactions. These chains are alternately interconnected by O1—H1O1···O2 intermolecuar hydrogen bonds. Furthermore, the crystal packing is stabilized by weak C—H···π interactions (Table 1) with the distance of 3.6159 (16) and 3.8481 (16) Å.

Related literature top

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Won et al. (2005); Zhao et al. (2005); Satyanarayana et al. (2004). For related structures, see: Razak et al. (2009); Ngaini et al. (2010, 2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 3-hydroxyacetophenone (1.36 g, 10 mmol) and 4-tetradecyloxybenzaldehyde (3.19 ml, 10 mmol) in methanol (40 ml) was heated at reflux for 12 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2N). The resulting precipitate was filtered, washed and dried. After redissolving in hexane-ethanol (7:1 v/v) followed by few days of slow evaporation, crystals were collected.

Refinement top

The O-bound H atom was located in a difference Fourier map and refined freely with O–H = 0.927 (19) Å. The remaining H atoms were placed in calculated positions with C–H = 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The rotating model group was applied to the methyl group. Two outliers (0 0 1) and (1 0 1) were omitted.

Structure description top

Chalcones are highly reactive subtances of varied nature. They have been reported to possess many useful properties including anti-malarial (Xue et al., 2004), anti-cancer (Bhat et al., 2005), anti-inflammatory (Won et al., 2005), anti-platelet (Zhao et al., 2005) and anti-hyperglynemic (Satyanarayana et al., 2004) activities. Herein, we report the crystal structure of the title compound (Fig. 1).

The enone moiety (O2/C7–C9) adopts an s-cis conformation with the O2–C7–C8–C9 torsion angle of 0.64 (17)°. The dihedral angles between the least-square plane through the enone moiety and the benzene rings (C1–C6 and C10–C15) are 6.26 (7) and 4.65 (7)°, respectively. The dihedral angle between these benzene rings is 4.33 (5)°. The bond lengths observed in the title compound are comparable with the values previously reported values in the literature (Allen et al., 1987).

The short H8A···H15A (2.20 Å) and H8A···H1A (2.11 Å) contacts results in the widening of C8–C9–C10 (126.84 (11)°) and C1–C6–C7 (123.31 (10)°) angles, respectively. The geometric parameters are consistent to those observed in closely related structures (Razak et al., 2009; Ngaini et al., 2010; Ngaini et al., 2011).

The conformation throughout the zigzag alkoxyl tail is trans and is roughly coplanar with the attached benzene (C10–C15) ring as the torsion angle C16–O3–C13–C14 is 176.57 (10)°. However, only the aliphatic part (C16–C29) of the alkoxyl tail is constantly within the zigzag plane. The torsion angle of the aliphatic part deviate from the ideal value by 0.02 (10)–3.75 (10)° while the O3–C16–C17–C18 torsion angle shows value of 173.64 (9)°.

In the crystal packing (Fig. 2), the molecules are arranged in head-to-tail manner along the [-4 1 -1] direction. This arrangement is linked into extended chains through C29—H29···O1 intermolecular interactions. These chains are alternately interconnected by O1—H1O1···O2 intermolecuar hydrogen bonds. Furthermore, the crystal packing is stabilized by weak C—H···π interactions (Table 1) with the distance of 3.6159 (16) and 3.8481 (16) Å.

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Won et al. (2005); Zhao et al. (2005); Satyanarayana et al. (2004). For related structures, see: Razak et al. (2009); Ngaini et al. (2010, 2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis, showing the alternately interconnected extended chains parallel to the [4 -1 1] direction. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted.
(E)-1-(3-Hydroxyphenyl)-3-[4-(tetradecyloxy)phenyl]prop-2-en-1-one top
Crystal data top
C29H40O3Z = 2
Mr = 436.61F(000) = 476
Triclinic, P1Dx = 1.186 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5138 (16) ÅCell parameters from 5533 reflections
b = 10.155 (2) Åθ = 2.6–30.1°
c = 19.264 (5) ŵ = 0.08 mm1
α = 75.361 (6)°T = 100 K
β = 85.872 (7)°Block, colourless
γ = 83.013 (6)°0.29 × 0.12 × 0.08 mm
V = 1222.6 (5) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7155 independent reflections
Radiation source: fine-focus sealed tube5052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.979, Tmax = 0.994k = 1414
26295 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0913P)2 + 0.1348P]
where P = (Fo2 + 2Fc2)/3
7155 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C29H40O3γ = 83.013 (6)°
Mr = 436.61V = 1222.6 (5) Å3
Triclinic, P1Z = 2
a = 6.5138 (16) ÅMo Kα radiation
b = 10.155 (2) ŵ = 0.08 mm1
c = 19.264 (5) ÅT = 100 K
α = 75.361 (6)°0.29 × 0.12 × 0.08 mm
β = 85.872 (7)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7155 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5052 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.994Rint = 0.037
26295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.40 e Å3
7155 reflectionsΔρmin = 0.23 e Å3
293 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.67428 (14)0.11123 (9)0.62770 (5)0.0245 (2)
O21.18019 (13)0.07397 (8)0.44966 (4)0.01891 (19)
O30.03940 (13)0.44359 (8)0.27772 (4)0.01874 (19)
C11.10873 (19)0.31949 (12)0.55966 (6)0.0187 (2)
H1A0.98150.36690.54520.022*
C21.2188 (2)0.35854 (12)0.60903 (6)0.0210 (3)
H2A1.16480.43260.62730.025*
C31.4073 (2)0.28868 (12)0.63122 (6)0.0193 (2)
H3A1.47980.31580.66420.023*
C41.48910 (19)0.17725 (11)0.60411 (6)0.0168 (2)
C51.37933 (18)0.13808 (11)0.55490 (6)0.0159 (2)
H5A1.43310.06350.53700.019*
C61.19002 (18)0.20879 (11)0.53191 (5)0.0147 (2)
C71.08792 (18)0.16453 (11)0.47562 (5)0.0149 (2)
C80.88422 (19)0.23100 (11)0.45154 (6)0.0175 (2)
H8A0.81780.29850.47260.021*
C90.79155 (18)0.19653 (11)0.39981 (6)0.0157 (2)
H9A0.86090.12630.38140.019*
C100.59375 (18)0.25740 (11)0.36941 (5)0.0148 (2)
C110.51656 (19)0.20878 (11)0.31596 (6)0.0165 (2)
H11A0.59110.13530.30170.020*
C120.33214 (19)0.26639 (11)0.28337 (6)0.0162 (2)
H12A0.28380.23180.24800.019*
C130.22125 (18)0.37651 (11)0.30454 (5)0.0151 (2)
C140.29544 (19)0.42667 (11)0.35819 (6)0.0167 (2)
H14A0.22110.50050.37220.020*
C150.47706 (18)0.36780 (11)0.39023 (6)0.0163 (2)
H15A0.52350.40150.42620.020*
C160.04781 (19)0.40731 (11)0.21970 (6)0.0169 (2)
H16A0.07840.31280.23360.020*
H16B0.04670.41940.17790.020*
C170.24440 (19)0.50374 (11)0.20419 (6)0.0166 (2)
H17A0.21120.59670.19810.020*
H17B0.33980.48360.24560.020*
C180.35328 (18)0.49674 (11)0.13800 (6)0.0166 (2)
H18A0.38930.40460.14360.020*
H18B0.26050.51820.09600.020*
C190.54867 (18)0.59744 (11)0.12739 (6)0.0167 (2)
H19A0.64270.57180.16870.020*
H19B0.51170.68780.12590.020*
C200.66224 (19)0.60539 (11)0.05978 (6)0.0171 (2)
H20A0.56960.63180.01810.021*
H20B0.70090.51550.06100.021*
C210.85585 (18)0.70750 (11)0.05220 (6)0.0169 (2)
H21A0.81680.79650.05250.020*
H21B0.94890.67960.09360.020*
C220.97131 (19)0.72124 (11)0.01577 (6)0.0169 (2)
H22A0.87970.75130.05730.020*
H22B1.00860.63210.01670.020*
C231.16618 (18)0.82165 (11)0.02125 (6)0.0174 (2)
H23A1.25820.79070.02000.021*
H23B1.12880.91030.01950.021*
C241.28162 (19)0.83808 (11)0.08925 (6)0.0175 (2)
H24A1.31870.74940.09120.021*
H24B1.19010.86960.13060.021*
C251.47682 (19)0.93813 (11)0.09405 (6)0.0178 (2)
H25A1.43951.02670.09210.021*
H25B1.56810.90660.05260.021*
C261.59373 (19)0.95536 (11)0.16197 (6)0.0173 (2)
H26A1.50280.98690.20350.021*
H26B1.63190.86700.16390.021*
C271.78807 (19)1.05606 (12)0.16597 (6)0.0189 (2)
H27A1.74841.14530.16650.023*
H27B1.87451.02720.12290.023*
C281.9153 (2)1.06977 (12)0.23116 (6)0.0193 (2)
H28A1.82861.09580.27440.023*
H28B1.96110.98170.22980.023*
C292.1028 (2)1.17540 (13)0.23412 (7)0.0252 (3)
H29A2.17811.18080.27600.038*
H29B2.05811.26310.23640.038*
H29C2.19071.14900.19190.038*
H1O11.718 (3)0.046 (2)0.6024 (10)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (5)0.0297 (5)0.0300 (4)0.0089 (4)0.0123 (4)0.0174 (4)
O20.0174 (5)0.0197 (4)0.0206 (4)0.0027 (3)0.0034 (3)0.0084 (3)
O30.0155 (4)0.0225 (4)0.0195 (4)0.0050 (3)0.0090 (3)0.0086 (3)
C10.0145 (6)0.0203 (5)0.0213 (5)0.0036 (4)0.0041 (4)0.0069 (4)
C20.0192 (6)0.0203 (5)0.0260 (5)0.0029 (5)0.0033 (5)0.0120 (4)
C30.0175 (6)0.0214 (5)0.0217 (5)0.0006 (5)0.0051 (4)0.0100 (4)
C40.0136 (6)0.0188 (5)0.0180 (5)0.0007 (4)0.0030 (4)0.0050 (4)
C50.0150 (6)0.0164 (5)0.0170 (5)0.0010 (4)0.0030 (4)0.0059 (4)
C60.0137 (6)0.0160 (5)0.0144 (4)0.0008 (4)0.0018 (4)0.0035 (4)
C70.0145 (6)0.0150 (5)0.0145 (4)0.0007 (4)0.0021 (4)0.0026 (4)
C80.0149 (6)0.0190 (5)0.0185 (5)0.0021 (4)0.0031 (4)0.0058 (4)
C90.0143 (6)0.0150 (5)0.0167 (5)0.0005 (4)0.0022 (4)0.0026 (4)
C100.0126 (6)0.0160 (5)0.0148 (4)0.0005 (4)0.0020 (4)0.0019 (4)
C110.0157 (6)0.0171 (5)0.0171 (5)0.0008 (4)0.0016 (4)0.0059 (4)
C120.0149 (6)0.0186 (5)0.0157 (4)0.0001 (4)0.0036 (4)0.0056 (4)
C130.0122 (5)0.0168 (5)0.0154 (4)0.0013 (4)0.0034 (4)0.0027 (4)
C140.0148 (6)0.0177 (5)0.0183 (5)0.0018 (4)0.0025 (4)0.0070 (4)
C150.0151 (6)0.0184 (5)0.0159 (5)0.0004 (4)0.0037 (4)0.0052 (4)
C160.0159 (6)0.0189 (5)0.0165 (5)0.0008 (4)0.0058 (4)0.0051 (4)
C170.0140 (6)0.0179 (5)0.0172 (5)0.0016 (4)0.0042 (4)0.0037 (4)
C180.0140 (6)0.0177 (5)0.0179 (5)0.0018 (4)0.0052 (4)0.0043 (4)
C190.0139 (6)0.0182 (5)0.0173 (5)0.0019 (4)0.0037 (4)0.0042 (4)
C200.0150 (6)0.0185 (5)0.0178 (5)0.0023 (4)0.0043 (4)0.0051 (4)
C210.0147 (6)0.0189 (5)0.0167 (5)0.0018 (4)0.0041 (4)0.0046 (4)
C220.0154 (6)0.0182 (5)0.0171 (5)0.0013 (4)0.0048 (4)0.0046 (4)
C230.0154 (6)0.0198 (5)0.0166 (5)0.0025 (4)0.0049 (4)0.0047 (4)
C240.0166 (6)0.0180 (5)0.0175 (5)0.0022 (4)0.0050 (4)0.0043 (4)
C250.0166 (6)0.0184 (5)0.0181 (5)0.0030 (4)0.0056 (4)0.0050 (4)
C260.0170 (6)0.0174 (5)0.0175 (5)0.0018 (4)0.0056 (4)0.0044 (4)
C270.0190 (6)0.0181 (5)0.0202 (5)0.0030 (5)0.0077 (4)0.0064 (4)
C280.0189 (6)0.0216 (5)0.0177 (5)0.0021 (5)0.0063 (4)0.0058 (4)
C290.0220 (7)0.0282 (6)0.0269 (6)0.0062 (5)0.0112 (5)0.0107 (5)
Geometric parameters (Å, º) top
O1—C41.3561 (14)C18—C191.5239 (15)
O1—H1O10.927 (19)C18—H18A0.9700
O2—C71.2296 (13)C18—H18B0.9700
O3—C131.3594 (13)C19—C201.5237 (15)
O3—C161.4346 (13)C19—H19A0.9700
C1—C21.3906 (16)C19—H19B0.9700
C1—C61.3958 (14)C20—C211.5228 (15)
C1—H1A0.9300C20—H20A0.9700
C2—C31.3799 (17)C20—H20B0.9700
C2—H2A0.9300C21—C221.5244 (15)
C3—C41.3959 (15)C21—H21A0.9700
C3—H3A0.9300C21—H21B0.9700
C4—C51.3876 (15)C22—C231.5205 (16)
C5—C61.3910 (16)C22—H22A0.9700
C5—H5A0.9300C22—H22B0.9700
C6—C71.4977 (15)C23—C241.5199 (15)
C7—C81.4642 (16)C23—H23A0.9700
C8—C91.3394 (15)C23—H23B0.9700
C8—H8A0.9300C24—C251.5208 (16)
C9—C101.4550 (16)C24—H24A0.9700
C9—H9A0.9300C24—H24B0.9700
C10—C111.3960 (14)C25—C261.5224 (15)
C10—C151.4041 (15)C25—H25A0.9700
C11—C121.3898 (16)C25—H25B0.9700
C11—H11A0.9300C26—C271.5210 (16)
C12—C131.3892 (14)C26—H26A0.9700
C12—H12A0.9300C26—H26B0.9700
C13—C141.3996 (14)C27—C281.5220 (15)
C14—C151.3728 (15)C27—H27A0.9700
C14—H14A0.9300C27—H27B0.9700
C15—H15A0.9300C28—C291.5186 (17)
C16—C171.5133 (15)C28—H28A0.9700
C16—H16A0.9700C28—H28B0.9700
C16—H16B0.9700C29—H29A0.9600
C17—C181.5238 (15)C29—H29B0.9600
C17—H17A0.9700C29—H29C0.9600
C17—H17B0.9700
C4—O1—H1O1109.7 (12)C20—C19—H19A108.6
C13—O3—C16120.08 (8)C18—C19—H19A108.6
C2—C1—C6119.72 (11)C20—C19—H19B108.6
C2—C1—H1A120.1C18—C19—H19B108.6
C6—C1—H1A120.1H19A—C19—H19B107.5
C3—C2—C1120.77 (10)C21—C20—C19112.36 (9)
C3—C2—H2A119.6C21—C20—H20A109.1
C1—C2—H2A119.6C19—C20—H20A109.1
C2—C3—C4119.90 (10)C21—C20—H20B109.1
C2—C3—H3A120.1C19—C20—H20B109.1
C4—C3—H3A120.1H20A—C20—H20B107.9
O1—C4—C5122.73 (9)C20—C21—C22114.06 (9)
O1—C4—C3117.87 (10)C20—C21—H21A108.7
C5—C4—C3119.40 (10)C22—C21—H21A108.7
C4—C5—C6120.95 (10)C20—C21—H21B108.7
C4—C5—H5A119.5C22—C21—H21B108.7
C6—C5—H5A119.5H21A—C21—H21B107.6
C5—C6—C1119.26 (10)C23—C22—C21112.97 (9)
C5—C6—C7117.38 (9)C23—C22—H22A109.0
C1—C6—C7123.31 (10)C21—C22—H22A109.0
O2—C7—C8121.41 (10)C23—C22—H22B109.0
O2—C7—C6118.66 (10)C21—C22—H22B109.0
C8—C7—C6119.91 (9)H22A—C22—H22B107.8
C9—C8—C7121.35 (10)C24—C23—C22113.65 (9)
C9—C8—H8A119.3C24—C23—H23A108.8
C7—C8—H8A119.3C22—C23—H23A108.8
C8—C9—C10126.83 (10)C24—C23—H23B108.8
C8—C9—H9A116.6C22—C23—H23B108.8
C10—C9—H9A116.6H23A—C23—H23B107.7
C11—C10—C15117.57 (10)C23—C24—C25113.25 (9)
C11—C10—C9119.95 (10)C23—C24—H24A108.9
C15—C10—C9122.45 (10)C25—C24—H24A108.9
C12—C11—C10122.27 (10)C23—C24—H24B108.9
C12—C11—H11A118.9C25—C24—H24B108.9
C10—C11—H11A118.9H24A—C24—H24B107.7
C13—C12—C11118.83 (10)C24—C25—C26113.70 (9)
C13—C12—H12A120.6C24—C25—H25A108.8
C11—C12—H12A120.6C26—C25—H25A108.8
O3—C13—C12125.69 (10)C24—C25—H25B108.8
O3—C13—C14114.44 (9)C26—C25—H25B108.8
C12—C13—C14119.86 (10)H25A—C25—H25B107.7
C15—C14—C13120.53 (10)C27—C26—C25112.98 (9)
C15—C14—H14A119.7C27—C26—H26A109.0
C13—C14—H14A119.7C25—C26—H26A109.0
C14—C15—C10120.92 (10)C27—C26—H26B109.0
C14—C15—H15A119.5C25—C26—H26B109.0
C10—C15—H15A119.5H26A—C26—H26B107.8
O3—C16—C17104.86 (8)C26—C27—C28114.37 (9)
O3—C16—H16A110.8C26—C27—H27A108.7
C17—C16—H16A110.8C28—C27—H27A108.7
O3—C16—H16B110.8C26—C27—H27B108.7
C17—C16—H16B110.8C28—C27—H27B108.7
H16A—C16—H16B108.9H27A—C27—H27B107.6
C16—C17—C18114.84 (9)C29—C28—C27112.26 (9)
C16—C17—H17A108.6C29—C28—H28A109.2
C18—C17—H17A108.6C27—C28—H28A109.2
C16—C17—H17B108.6C29—C28—H28B109.2
C18—C17—H17B108.6C27—C28—H28B109.2
H17A—C17—H17B107.5H28A—C28—H28B107.9
C17—C18—C19110.54 (9)C28—C29—H29A109.5
C17—C18—H18A109.5C28—C29—H29B109.5
C19—C18—H18A109.5H29A—C29—H29B109.5
C17—C18—H18B109.5C28—C29—H29C109.5
C19—C18—H18B109.5H29A—C29—H29C109.5
H18A—C18—H18B108.1H29B—C29—H29C109.5
C20—C19—C18114.83 (9)
C6—C1—C2—C30.31 (19)C16—O3—C13—C123.73 (17)
C1—C2—C3—C40.14 (19)C16—O3—C13—C14176.57 (10)
C2—C3—C4—O1179.67 (11)C11—C12—C13—O3179.88 (11)
C2—C3—C4—C50.08 (18)C11—C12—C13—C140.44 (17)
O1—C4—C5—C6179.82 (11)O3—C13—C14—C15179.62 (10)
C3—C4—C5—C60.43 (18)C12—C13—C14—C150.09 (18)
C4—C5—C6—C10.88 (18)C13—C14—C15—C100.82 (18)
C4—C5—C6—C7176.62 (10)C11—C10—C15—C140.98 (17)
C2—C1—C6—C50.81 (18)C9—C10—C15—C14177.11 (11)
C2—C1—C6—C7176.53 (11)C13—O3—C16—C17179.19 (9)
C5—C6—C7—O23.99 (16)O3—C16—C17—C18173.04 (9)
C1—C6—C7—O2173.39 (11)C16—C17—C18—C19179.95 (10)
C5—C6—C7—C8177.31 (10)C17—C18—C19—C20176.22 (10)
C1—C6—C7—C85.30 (17)C18—C19—C20—C21179.98 (10)
O2—C7—C8—C90.64 (18)C19—C20—C21—C22178.56 (10)
C6—C7—C8—C9178.02 (11)C20—C21—C22—C23178.85 (10)
C7—C8—C9—C10177.78 (11)C21—C22—C23—C24179.19 (10)
C8—C9—C10—C11179.31 (12)C22—C23—C24—C25179.71 (10)
C8—C9—C10—C152.64 (19)C23—C24—C25—C26179.99 (10)
C15—C10—C11—C120.44 (17)C24—C25—C26—C27179.83 (10)
C9—C10—C11—C12177.70 (11)C25—C26—C27—C28176.74 (10)
C10—C11—C12—C130.25 (18)C26—C27—C28—C29177.78 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.93 (2)1.80 (2)2.7269 (14)175.6 (18)
C29—H29A···O1ii0.962.443.3589 (18)160
C17—H17B···Cg1iii0.972.733.6159 (16)152
C28—H28A···Cg2iv0.972.933.8481 (16)159
Symmetry codes: (i) x+3, y, z+1; (ii) x4, y+1, z1; (iii) x1, y, z; (iv) x3, y+1, z1.

Experimental details

Crystal data
Chemical formulaC29H40O3
Mr436.61
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5138 (16), 10.155 (2), 19.264 (5)
α, β, γ (°)75.361 (6), 85.872 (7), 83.013 (6)
V3)1222.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.29 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.979, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
26295, 7155, 5052
Rint0.037
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.147, 0.95
No. of reflections7155
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10–C15 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.93 (2)1.80 (2)2.7269 (14)175.6 (18)
C29—H29A···O1ii0.96002.44003.3589 (18)160.00
C17—H17B···Cg1iii0.97002.733.6159 (16)152
C28—H28A···Cg2iv0.97002.933.8481 (16)159
Symmetry codes: (i) x+3, y, z+1; (ii) x4, y+1, z1; (iii) x1, y, z; (iv) x3, y+1, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

IAR and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171. ZN and HH thank Universiti Malaysia Sarawak and the Ministry of Science, Technology and Innovation (MOSTI), for financing this project through FRGS/01(14)/743/2010 (29). SMHF thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a schol­arship for postgraduate studies.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o3275–o3276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2011). Acta Cryst. E67, o169–o170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1439–o1440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds