organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{(E)-2-[4-(But-3-en-1-yl­­oxy)phen­yl]diazen-1-yl}benzoic acid

aUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, and bDepartment of Chemistry, Faculty Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: lutfor73@gmail.com

(Received 9 July 2012; accepted 10 September 2012; online 19 September 2012)

The title compound, C17H16N2O3, has an E conformation about the azobenzene (–N=N–) linkage. The benzene rings are twisted slightly with respect to each other [6.79 (9)°], while the dihedral angle between the plane through the carb­oxy group and the attached benzene ring is 3.2 (2)°. In the crystal, mol­ecules are oriented with the carb­oxy groups head-to-head, forming O—H⋯O hydrogen-bonded inversion dimers. These dimers are connected by C—H⋯O hydrogen-bonds into layers lying parallel to the (013) plane.

Related literature

For the physical properties of compounds containing an azobenzene (–N=N–) linkage, see: Chigrinov (2005[Chigrinov, V. G. (2005). ICOCN 2005 Digest, p. 285.]); Hegde (2007[Hegde, G. (2007). PhD thesis, University Malaysia Pahang, Malaysia.]). For related structures, see: Yu & Liu (2009[Yu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.]); Lai et al. (2002[Lai, L.-L., Su, F.-Y., Lin, Y.-J., Ho, C.-H., Wang, E., Hung, C.-H., Liu, Y.-H. & Wang, Y. (2002). Helv. Chim. Acta, 85, 1517-1522.]); Centore & Tuzi (2003[Centore, R. & Tuzi, A. (2003). Cryst. Eng. 6, 87-97.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O3

  • Mr = 296.33

  • Triclinic, [P \overline 1]

  • a = 7.0937 (7) Å

  • b = 9.8687 (10) Å

  • c = 11.2490 (11) Å

  • α = 87.334 (8)°

  • β = 73.475 (8)°

  • γ = 75.174 (8)°

  • V = 729.54 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.26 × 0.16 × 0.04 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.85, Tmax = 0.97

  • 9940 measured reflections

  • 2783 independent reflections

  • 2298 reflections with I > 2.0σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.146

  • S = 1.00

  • 2773 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2⋯O1i 0.87 1.76 2.612 (3) 166 (1)
C21—H211⋯O1ii 0.95 2.50 3.275 (3) 139 (1)
Symmetry codes: (i) -x, -y+3, -z; (ii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

An in a molecule introduces the possibility of photochromism and photoisomerization (Chigrinov, 2005). Photonics, in which the light can be controlled by light as stimulus has been exploited (Hegde, 2007). Upon absorption of UV light (~ 365 nm) the energetically more stable E conformation, transforms into the Z conformation. The reverse transformation of the Z isomer into the E isomer can be brought about by irradiation with visible light (in the range of 400–500 nm). The latter can also occur in the "dark" by a process known as "thermal back relaxation" in a period ranging from minutes to tens of hours depending on the system. In this case molecules again transform from the metastable cis-conformation to the energetically stable trans-conformation. In conclusion, the present investigation on rod-shaped azo dyes is very useful for a variety of photonic applications. Excellent quality, cost effective, easy to prepare, are properties which make these devices very attractive for future generations. Detailed investigations on the physics of these azo dyes is under intense consideration.

The bond lengths (Allen et al.,1987) and bond angles in the titled compound (Fig. 1) are normal. The carbonyl group (C2/O1/O3) is almost coplanar with the attached benzene ring (C4-C7/C21/C22) with a dihedral angle of only 3.2 (2)°. The length of N8N9 bond is 1.263 (2) Å and the torsion angle for the azo unit (C7—N8—N9—C10) is -177.75 (16)° rather than ca. ±180° as observed elsewhere: For example: 4,4-Azinodibenzoic acid (Yu and Liu, 2009) and (E)-ethyl 4-((4-(decanoyloxy)phenyl)diazenyl)benzoate (Lai et al.,2002). However, it is comparable with the value of 175.10° observed for (E)-4-((4-((2-hydroxyethyl)(methyl)amino)phenyl)diazenyl)benzoic acid (Centore & Tuzi, 2003). The benzene rings (C4-C7/C21/C22 and C10-C3/C19/C20) lie at a mutual dihedral angles of 6.79 (9)°, compared to 16.69° in (E)-4-((4-((2-hydroxyethyl)(methyl)amino)phenyl)diazenyl)benzoic acid (Centore & Tuzi, 2003). The C15—C16—C17—C18 torsion angle in the butyl group is 126.1 (3)°.

In the crystal, the carboxyl groups are oriented head-to-head forming hydrogen bonded inversion dimers (Table 1 and Fig. 2). These dimers are further linked by C—H···O hydrogen bonds to a generate a layer parallel to the (013) plane (Table 1 and Fig. 2).

Related literature top

For the physical properties of compounds containing an azobenzene (–N=N–) linkage, see: Chigrinov (2005); Hegde (2007). For related structures, see: Yu & Liu (2009); Lai et al. (2002); Centore & Tuzi (2003). For standard bond lengths, see Allen et al. (1987).

Experimental top

The title compound was prepared from ethyl 4-aminobenzoate. Firstly the diazonuim salt was prepared using one equivalent of sodium nitrite to one equivalent of ethyl 4-aminobenzoate in methanol - water mixture at 275 K, in the presence of 3 equivalents of aqueous hydrochloric acid, which was coupled with phenol to yield ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoate. This compound was then alkylated with 4-bromo-1-butene in the presence of potassium carbonate as base to give the ester, ethyl 4-{[4-(but-3-en-1-yloxy)phenyl]diazenyl}benzoate. This compound was then hydrolyzed under basic conditions to yield the title benzoic acid. Brown plate-like crystals of the title compound were obtained by slow evaporation of a solution in methanol.

Refinement top

The H atoms were all located in a difference Fourier map, but those attached to carbon atoms were repositioned geometrically. They were all initially refined with soft restraints on the bond lengths and angles to regularize their geometry: C—H = 0.93 (2)–0.98 (2) Å and O—H = 0.82 (2) Å with Uiso(H) = k × Ueq(O,C) where k = 1.5 for the OH H atom and = 1.2 for the C-bound H atoms. In the final cycles or refinement they were allowed to ride on their parent atom.

Structure description top

An in a molecule introduces the possibility of photochromism and photoisomerization (Chigrinov, 2005). Photonics, in which the light can be controlled by light as stimulus has been exploited (Hegde, 2007). Upon absorption of UV light (~ 365 nm) the energetically more stable E conformation, transforms into the Z conformation. The reverse transformation of the Z isomer into the E isomer can be brought about by irradiation with visible light (in the range of 400–500 nm). The latter can also occur in the "dark" by a process known as "thermal back relaxation" in a period ranging from minutes to tens of hours depending on the system. In this case molecules again transform from the metastable cis-conformation to the energetically stable trans-conformation. In conclusion, the present investigation on rod-shaped azo dyes is very useful for a variety of photonic applications. Excellent quality, cost effective, easy to prepare, are properties which make these devices very attractive for future generations. Detailed investigations on the physics of these azo dyes is under intense consideration.

The bond lengths (Allen et al.,1987) and bond angles in the titled compound (Fig. 1) are normal. The carbonyl group (C2/O1/O3) is almost coplanar with the attached benzene ring (C4-C7/C21/C22) with a dihedral angle of only 3.2 (2)°. The length of N8N9 bond is 1.263 (2) Å and the torsion angle for the azo unit (C7—N8—N9—C10) is -177.75 (16)° rather than ca. ±180° as observed elsewhere: For example: 4,4-Azinodibenzoic acid (Yu and Liu, 2009) and (E)-ethyl 4-((4-(decanoyloxy)phenyl)diazenyl)benzoate (Lai et al.,2002). However, it is comparable with the value of 175.10° observed for (E)-4-((4-((2-hydroxyethyl)(methyl)amino)phenyl)diazenyl)benzoic acid (Centore & Tuzi, 2003). The benzene rings (C4-C7/C21/C22 and C10-C3/C19/C20) lie at a mutual dihedral angles of 6.79 (9)°, compared to 16.69° in (E)-4-((4-((2-hydroxyethyl)(methyl)amino)phenyl)diazenyl)benzoic acid (Centore & Tuzi, 2003). The C15—C16—C17—C18 torsion angle in the butyl group is 126.1 (3)°.

In the crystal, the carboxyl groups are oriented head-to-head forming hydrogen bonded inversion dimers (Table 1 and Fig. 2). These dimers are further linked by C—H···O hydrogen bonds to a generate a layer parallel to the (013) plane (Table 1 and Fig. 2).

For the physical properties of compounds containing an azobenzene (–N=N–) linkage, see: Chigrinov (2005); Hegde (2007). For related structures, see: Yu & Liu (2009); Lai et al. (2002); Centore & Tuzi (2003). For standard bond lengths, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound, with the hydrogen bonds shown as dashed lines [the C-bound H atoms have been omitted for clarity].
4-{(E)-2-[4-(But-3-en-1-yloxy)phenyl]diazen-1-yl}benzoic acid top
Crystal data top
C17H16N2O3Z = 2
Mr = 296.33F(000) = 312
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 7.0937 (7) ÅCell parameters from 3768 reflections
b = 9.8687 (10) Åθ = 4–71°
c = 11.2490 (11) ŵ = 0.77 mm1
α = 87.334 (8)°T = 100 K
β = 73.475 (8)°Plate, brown
γ = 75.174 (8)°0.26 × 0.16 × 0.04 mm
V = 729.54 (13) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
2783 independent reflections
Radiation source: sealed x-ray tube2298 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 71.5°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 88
Tmin = 0.85, Tmax = 0.97k = 1111
9940 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.146 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.76P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.0003776
2773 reflectionsΔρmax = 0.51 e Å3
199 parametersΔρmin = 0.33 e Å3
0 restraints
Crystal data top
C17H16N2O3γ = 75.174 (8)°
Mr = 296.33V = 729.54 (13) Å3
Triclinic, P1Z = 2
a = 7.0937 (7) ÅCu Kα radiation
b = 9.8687 (10) ŵ = 0.77 mm1
c = 11.2490 (11) ÅT = 100 K
α = 87.334 (8)°0.26 × 0.16 × 0.04 mm
β = 73.475 (8)°
Data collection top
Oxford Diffraction Gemini
diffractometer
2783 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2298 reflections with I > 2.0σ(I)
Tmin = 0.85, Tmax = 0.97Rint = 0.024
9940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
2773 reflectionsΔρmin = 0.33 e Å3
199 parameters
Special details top

Refinement. This compound, 9940 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 2783 reflection left. 10 more reflections were filtered, as sigma cutoff was set as 3 and (sinθ/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 2773.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0122 (2)1.34005 (15)0.07329 (14)0.0276
C20.1938 (3)1.3516 (2)0.04699 (18)0.0221
O30.2517 (2)1.45464 (14)0.00910 (14)0.0281
C40.3484 (3)1.2387 (2)0.08338 (17)0.0215
C50.2990 (3)1.1180 (2)0.14000 (18)0.0231
C60.4449 (3)1.0125 (2)0.17190 (18)0.0233
C70.6447 (3)1.0260 (2)0.14525 (18)0.0220
N80.8099 (2)0.92608 (18)0.17206 (15)0.0238
N90.7751 (2)0.81065 (17)0.21222 (15)0.0235
C100.9450 (3)0.7184 (2)0.24132 (18)0.0243
C111.1313 (3)0.7536 (2)0.2247 (2)0.0293
C121.2896 (3)0.6624 (2)0.2565 (2)0.0321
C131.2665 (3)0.5349 (2)0.30679 (19)0.0302
O141.4341 (2)0.45519 (16)0.33669 (15)0.0364
C151.4290 (4)0.3232 (2)0.3930 (2)0.0349
C161.6307 (4)0.2701 (3)0.4247 (2)0.0399
C171.6430 (4)0.1366 (3)0.4911 (2)0.0388
C181.7890 (4)0.0213 (3)0.4581 (3)0.0455
C191.0850 (3)0.4962 (2)0.32338 (19)0.0310
C200.9240 (3)0.5897 (2)0.28909 (19)0.0287
C210.6931 (3)1.1467 (2)0.09065 (19)0.0252
C220.5462 (3)1.2529 (2)0.06039 (18)0.0238
H510.16311.10980.15660.0298*
H610.41120.92980.21200.0302*
H1111.14830.84330.18880.0379*
H1211.41680.68600.24480.0406*
H1511.31100.33690.46830.0453*
H1521.41460.25840.33280.0447*
H1611.64180.34680.47510.0512*
H1621.74780.25310.34820.0518*
H1711.53250.13560.56570.0520*
H1821.90170.02370.38290.0605*
H1811.78590.06320.50680.0604*
H1911.06580.40830.35770.0394*
H2010.80030.56520.29750.0369*
H2110.82781.15520.07400.0331*
H2210.57941.33550.02130.0322*
H20.17041.51510.04230.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (7)0.0239 (8)0.0399 (8)0.0047 (6)0.0132 (6)0.0029 (6)
C20.0228 (10)0.0191 (10)0.0252 (10)0.0034 (8)0.0092 (8)0.0018 (8)
O30.0270 (8)0.0210 (8)0.0385 (8)0.0048 (6)0.0154 (6)0.0082 (6)
C40.0213 (10)0.0195 (10)0.0243 (9)0.0033 (8)0.0087 (8)0.0015 (8)
C50.0183 (9)0.0230 (11)0.0295 (10)0.0048 (8)0.0094 (8)0.0016 (8)
C60.0236 (10)0.0203 (10)0.0279 (10)0.0064 (8)0.0098 (8)0.0030 (8)
C70.0213 (10)0.0198 (10)0.0248 (10)0.0009 (8)0.0100 (8)0.0005 (8)
N80.0217 (8)0.0225 (9)0.0272 (9)0.0028 (7)0.0094 (7)0.0016 (7)
N90.0207 (8)0.0218 (9)0.0258 (8)0.0003 (7)0.0073 (7)0.0008 (7)
C100.0235 (10)0.0231 (11)0.0228 (10)0.0018 (8)0.0079 (8)0.0014 (8)
C110.0256 (11)0.0273 (11)0.0338 (11)0.0009 (9)0.0116 (9)0.0001 (9)
C120.0260 (11)0.0317 (12)0.0391 (12)0.0018 (9)0.0145 (9)0.0008 (10)
C130.0281 (11)0.0311 (12)0.0276 (10)0.0047 (9)0.0119 (9)0.0046 (9)
O140.0356 (9)0.0287 (8)0.0461 (9)0.0007 (7)0.0216 (7)0.0028 (7)
C150.0410 (13)0.0270 (12)0.0348 (12)0.0002 (10)0.0149 (10)0.0006 (9)
C160.0456 (14)0.0359 (14)0.0420 (13)0.0055 (11)0.0228 (11)0.0019 (10)
C170.0383 (13)0.0374 (13)0.0408 (13)0.0019 (10)0.0187 (10)0.0032 (10)
C180.0463 (15)0.0372 (14)0.0563 (16)0.0033 (11)0.0264 (13)0.0022 (12)
C190.0390 (12)0.0218 (11)0.0273 (10)0.0000 (9)0.0086 (9)0.0013 (8)
C200.0272 (11)0.0270 (11)0.0284 (11)0.0022 (9)0.0064 (8)0.0009 (8)
C210.0196 (9)0.0265 (11)0.0310 (10)0.0066 (8)0.0087 (8)0.0002 (8)
C220.0237 (10)0.0196 (10)0.0294 (10)0.0055 (8)0.0101 (8)0.0031 (8)
Geometric parameters (Å, º) top
O1—C21.271 (2)C13—O141.367 (3)
C2—O31.268 (2)C13—C191.395 (3)
C2—C41.483 (3)O14—C151.426 (3)
O3—H20.868C15—C161.529 (3)
C4—C51.401 (3)C15—H1510.993
C4—C221.395 (3)C15—H1520.996
C5—C61.382 (3)C16—C171.479 (3)
C5—H510.952C16—H1610.998
C6—C71.403 (3)C16—H1620.997
C6—H610.965C17—C181.312 (4)
C7—N81.421 (3)C17—H1710.974
C7—C211.391 (3)C18—H1820.989
N8—N91.263 (2)C18—H1810.978
N9—C101.423 (3)C19—C201.408 (3)
C10—C111.411 (3)C19—H1910.959
C10—C201.382 (3)C20—H2010.947
C11—C121.371 (3)C21—C221.382 (3)
C11—H1110.977C21—H2110.945
C12—C131.384 (3)C22—H2210.959
C12—H1210.960
O1—C2—O3123.76 (18)O14—C15—C16106.04 (19)
O1—C2—C4118.68 (17)O14—C15—H151109.0
O3—C2—C4117.56 (17)C16—C15—H151111.8
C2—O3—H2119.6O14—C15—H152108.8
C2—C4—C5121.02 (17)C16—C15—H152111.3
C2—C4—C22119.37 (17)H151—C15—H152109.7
C5—C4—C22119.61 (18)C15—C16—C17112.4 (2)
C4—C5—C6120.55 (18)C15—C16—H161106.1
C4—C5—H51119.1C17—C16—H161112.0
C6—C5—H51120.4C15—C16—H162111.1
C5—C6—C7119.42 (18)C17—C16—H162107.0
C5—C6—H61120.9H161—C16—H162108.3
C7—C6—H61119.7C16—C17—C18125.6 (3)
C6—C7—N8125.56 (18)C16—C17—H171116.3
C6—C7—C21119.98 (18)C18—C17—H171118.0
N8—C7—C21114.44 (17)C17—C18—H182117.5
C7—N8—N9115.89 (16)C17—C18—H181120.8
N8—N9—C10112.56 (16)H182—C18—H181121.7
N9—C10—C11122.76 (18)C13—C19—C20118.9 (2)
N9—C10—C20118.03 (18)C13—C19—H191122.3
C11—C10—C20119.21 (19)C20—C19—H191118.8
C10—C11—C12120.7 (2)C19—C20—C10120.4 (2)
C10—C11—H111119.5C19—C20—H201120.6
C12—C11—H111119.8C10—C20—H201118.9
C11—C12—C13119.9 (2)C7—C21—C22120.46 (18)
C11—C12—H121120.8C7—C21—H211119.3
C13—C12—H121119.3C22—C21—H211120.3
C12—C13—O14114.02 (19)C4—C22—C21119.94 (18)
C12—C13—C19120.84 (19)C4—C22—H221119.3
O14—C13—C19125.1 (2)C21—C22—H221120.7
C13—O14—C15119.93 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O1i0.871.762.612 (3)166 (1)
C21—H211···O1ii0.952.503.275 (3)139 (1)
Symmetry codes: (i) x, y+3, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H16N2O3
Mr296.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0937 (7), 9.8687 (10), 11.2490 (11)
α, β, γ (°)87.334 (8), 73.475 (8), 75.174 (8)
V3)729.54 (13)
Z2
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.26 × 0.16 × 0.04
Data collection
DiffractometerOxford Diffraction Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.85, 0.97
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
9940, 2783, 2298
Rint0.024
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.146, 1.00
No. of reflections2773
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), Superflip (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O1i0.8681.7622.612 (3)165.60 (7)
C21—H211···O1ii0.9452.5013.275 (3)139.24 (6)
Symmetry codes: (i) x, y+3, z; (ii) x+1, y, z.
 

Acknowledgements

This research was supported by a UMP research grant (No. RDU100338).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCentore, R. & Tuzi, A. (2003). Cryst. Eng. 6, 87–97.  Web of Science CSD CrossRef CAS Google Scholar
First citationChigrinov, V. G. (2005). ICOCN 2005 Digest, p. 285.  Google Scholar
First citationHegde, G. (2007). PhD thesis, University Malaysia Pahang, Malaysia.  Google Scholar
First citationLai, L.-L., Su, F.-Y., Lin, Y.-J., Ho, C.-H., Wang, E., Hung, C.-H., Liu, Y.-H. & Wang, Y. (2002). Helv. Chim. Acta, 85, 1517–1522.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds