organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propan-2-yl r-4-(4-fluoro­phen­yl)-3-hy­dr­oxy-c-6-methyl-2-phenyl-4,5-di­hydro-2H-indazole-t-5-carboxyl­ate

aDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: raghema2000@yahoo.co.in

(Received 15 September 2012; accepted 20 September 2012; online 26 September 2012)

In the title compound, C24H23FN2O3, the cyclo­hexene ring adopts a screw-boat conformation. The fluorobenzene ring attached to the cyclo­hexene ring and the phenyl ring attached to the indazole moiety are inclined to one another by 57.77 (13)°. In the crystal, mol­ecules are linked by O—H⋯N and C—H⋯O hydrogen bonds, forming chains with C(5) and C(10) graph-set motifs. There are also C—H⋯π inter­actions present. The isopropoxycarbonyl group undergoes considerable thermal motion.

Related literature

For examples of the biological activities of indazole derivatatives, see: Jain et al. (1987[Jain, A. C., Mehta, A. & Arya, P. (1987). Indian J. Chem. Sect. B, 26, 150-153.]); Palazzo et al. (1966[Palazzo, G., Corsi, G., Baiocchi, L. & Silnerstrini, B. (1966). J. Med. Chem. 9, 38-41.]); Popat et al. (2003[Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497-1501.]); Beylin et al. (1991[Beylin, V. G., Colbry, N. L., Giordani, A. B., Goel, O. P., Johnson, D. R., Leeds, R. L., Leja, B., Lewis, E. P., Lustgarten, D. M., Showalter, H. D. H., Sercel, A. D., Reily, M. D., Uhlendorf, S. E. & Zisek, K. A. (1991). J. Heterocycl. Chem. 28, 517-527.]); George et al. (1998[George, V. D., Kim, U. T., Liang, J., Cordova, B., Klabe, R. M., Garber, S., Bacheler, L. T., Lam, G. N., Wright, M. R., Logue, K. A., Viitanen, S. E., Ko, S. S. & Trainor, G. L. (1998). J. Med. Chem. 41, 2411-2423.]); Roman (1990[Roman, B. (1990). Pharmazie, 45, 214-217.]). For the crystal structure of a similar compound, namely 4,6-bis­(4-fluoro­phen­yl)-2-phenyl-1H-indazol-3(2H)-one, see: Butcher et al. (2011[Butcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1346-o1347.]). For information on graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23FN2O3

  • Mr = 406.44

  • Monoclinic, P 2/c

  • a = 17.640 (1) Å

  • b = 11.0295 (6) Å

  • c = 11.3791 (6) Å

  • β = 99.133 (1)°

  • V = 2185.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 20548 measured reflections

  • 3843 independent reflections

  • 2970 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.135

  • S = 1.03

  • 3843 reflections

  • 279 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C3/C8/C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.82 2.6143 (18) 162
C22—H22⋯O52ii 0.93 2.56 3.229 (6) 129
C24—H24⋯Cg1iii 0.93 2.77 3.694 (3) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indazole derivatives possess a wide spectrum of pharmacological activities, such as analgestic, anti-inflammatory, anti-depressant, anti-hypertensive, anti-viral and anti-cancer (Jain et al., 1987; Palazzo et al., 1966; Popat et al., 2003; Beylin et al., 1991; George et al., 1998; Roman, 1990). In the view of these important attributes, the title compound was synthesized and its crystal structure is described herein.

In the title molecule, Fig. 1, the cyclohexene ring adopts a scew-boat conformation with puckering parameters: Q = 0.391 (2) Å,θ = 61.7 (3)° and φ = 28.7 (3)° (Cremer & Pople, 1975). The methyl group attached at C6 is substituted in the β equitorial position [C8—C7—C6—C61 = 176.7 (2)°]. The pyrazole ring (N1/N2/C3/C8/C9) is almost planar with a maximum deviation of 0.010 (2) Å for atom N2. This five membered ring and the attached phenyl (C21-C26) ring make a dihedral angle of 37.51 (12)°. The same phenyl ring makes a dihedral angle of 57.77 (13)° with the fluorophenyl ring (C41-C46). This is similar to the situation in a related structure, 4,6-Bis(4-fluorophenyl)-2-phenyl-1H-indazol-3(2H)-one (Butcher et al., 2011), where the same angle is 57.69 (10)°.

In the crystal, molecules are linked by O—H···N and weak C— H···O hydrogen bonds, forming chains with C(5) and C(10) graph-set motifs (Bernstein et al., 1995) [Table 1 and Fig. 2]. There are also C-H···π interactions present (Table 1).

Related literature top

For examples of the biological activities of indazole derivatatives, see: Jain et al. (1987); Palazzo et al. (1966); Popat et al. (2003); Beylin et al. (1991); George et al. (1998); Roman (1990). For the crystal structure of a similar compound, namely 4,6-bis(4-fluorophenyl)-2-phenyl-1H-indazol-3(2H)-one, see: Butcher et al. (2011). For information on graph-set motifs, see: Bernstein et al. (1995). For information on ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of isopropyl acetoacetate(14.4 g, 100 mmol), 4-fluorobenzaldehyde(6.2 g, 50 mmol) and methylamine(1.55 g, 50 mmol) in ethanol(50 ml) was heated to boiling. The reaction mixture was kept overnight and the solid that seperated out was filtered off and purified by recrystallization from ethanol. 9.5 g (25 mmmol) of this product, r(2),c(4)-bis(isopropoxycarbonyl)-c(5)-hydroxy-t(5)- methyl-t(3)-(4'-fluorophenyl)cyclohexanone (yeild 14.8 g, 78%, M.p. 452 K), was dissolved in acetic acid and after the addition of phenylhydrazine (4.3 g, 40 mmol) in the presence of sodium acetate (2.9 g, 50 mmol), the reaction mixture was refluxed for 4 h. The solution was cooled and then poured into crushed ice. The precipitated solid was filtered off by suction (yield 70%, M.p. 493 K) and recrystallized from ethanol giving block-like colourless crystals.

Refinement top

The isopropycarboxylate group undergoes considerable thermal motion. Atom O52 was refined as disordered over two positions (O52/O52') and had a final refined occupancy ratio of 0.724 (15):0.276 (15). The C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.98 and 0.96 Å for CH(aromatic), CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for OH and CH3 H-atoms and = 1.2 for other H-atoms. Reflection 1 0 0 was partially obscured by the beam stop and was omitted.

Structure description top

Indazole derivatives possess a wide spectrum of pharmacological activities, such as analgestic, anti-inflammatory, anti-depressant, anti-hypertensive, anti-viral and anti-cancer (Jain et al., 1987; Palazzo et al., 1966; Popat et al., 2003; Beylin et al., 1991; George et al., 1998; Roman, 1990). In the view of these important attributes, the title compound was synthesized and its crystal structure is described herein.

In the title molecule, Fig. 1, the cyclohexene ring adopts a scew-boat conformation with puckering parameters: Q = 0.391 (2) Å,θ = 61.7 (3)° and φ = 28.7 (3)° (Cremer & Pople, 1975). The methyl group attached at C6 is substituted in the β equitorial position [C8—C7—C6—C61 = 176.7 (2)°]. The pyrazole ring (N1/N2/C3/C8/C9) is almost planar with a maximum deviation of 0.010 (2) Å for atom N2. This five membered ring and the attached phenyl (C21-C26) ring make a dihedral angle of 37.51 (12)°. The same phenyl ring makes a dihedral angle of 57.77 (13)° with the fluorophenyl ring (C41-C46). This is similar to the situation in a related structure, 4,6-Bis(4-fluorophenyl)-2-phenyl-1H-indazol-3(2H)-one (Butcher et al., 2011), where the same angle is 57.69 (10)°.

In the crystal, molecules are linked by O—H···N and weak C— H···O hydrogen bonds, forming chains with C(5) and C(10) graph-set motifs (Bernstein et al., 1995) [Table 1 and Fig. 2]. There are also C-H···π interactions present (Table 1).

For examples of the biological activities of indazole derivatatives, see: Jain et al. (1987); Palazzo et al. (1966); Popat et al. (2003); Beylin et al. (1991); George et al. (1998); Roman (1990). For the crystal structure of a similar compound, namely 4,6-bis(4-fluorophenyl)-2-phenyl-1H-indazol-3(2H)-one, see: Butcher et al. (2011). For information on graph-set motifs, see: Bernstein et al. (1995). For information on ring-puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecule structure of the title molecule, showing the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered atom O52 is shown.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing diagram of the title compound. Dashed lines indicate hydrogen bonds (see Table 1 for details).
Propan-2-yl r-4-(4-fluorophenyl)-3-hydroxy-c-6-methyl-2-phenyl- 4,5-dihydro-2H-indazole-t-5-carboxylate top
Crystal data top
C24H23FN2O3F(000) = 856
Mr = 406.44Dx = 1.235 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3844 reflections
a = 17.640 (1) Åθ = 2–25°
b = 11.0295 (6) ŵ = 0.09 mm1
c = 11.3791 (6) ÅT = 293 K
β = 99.133 (1)°Block, colourless
V = 2185.9 (2) Å30.35 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2970 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scanh = 2020
20548 measured reflectionsk = 1313
3843 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.9373P]
where P = (Fo2 + 2Fc2)/3
3843 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H23FN2O3V = 2185.9 (2) Å3
Mr = 406.44Z = 4
Monoclinic, P2/cMo Kα radiation
a = 17.640 (1) ŵ = 0.09 mm1
b = 11.0295 (6) ÅT = 293 K
c = 11.3791 (6) Å0.35 × 0.25 × 0.25 mm
β = 99.133 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2970 reflections with I > 2σ(I)
20548 measured reflectionsRint = 0.034
3843 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
3843 reflectionsΔρmin = 0.22 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F0.55203 (11)0.4061 (2)0.2222 (2)0.1378 (9)
O10.14456 (9)0.32293 (13)0.05959 (11)0.0505 (4)
H10.16090.29410.12520.076*
O510.26507 (13)0.19468 (16)0.01810 (17)0.0885 (6)
O520.2223 (4)0.1001 (5)0.1280 (9)0.116 (2)0.724 (15)
O52'0.1999 (12)0.0778 (13)0.0673 (18)0.116 (2)0.276 (15)
N20.14598 (9)0.28868 (14)0.13981 (12)0.0369 (4)
N10.18599 (9)0.22532 (14)0.21440 (12)0.0386 (4)
C30.17400 (10)0.26286 (16)0.02333 (14)0.0356 (4)
C40.28913 (11)0.12354 (17)0.07402 (16)0.0376 (4)
H40.26380.10760.14310.045*
C50.31565 (12)0.00027 (17)0.02803 (17)0.0430 (5)
H50.36420.02020.07880.052*
C60.33235 (12)0.00401 (18)0.09910 (18)0.0453 (5)
C70.29229 (12)0.07767 (18)0.17831 (17)0.0443 (5)
H70.30040.07670.25710.053*
C80.23623 (10)0.15914 (16)0.14217 (15)0.0362 (4)
C90.23134 (10)0.17912 (16)0.02211 (15)0.0351 (4)
C210.08425 (11)0.36638 (17)0.18736 (16)0.0396 (4)
C220.09024 (13)0.4340 (2)0.28730 (18)0.0538 (6)
H220.13420.42920.32260.065*
C230.03079 (16)0.5085 (2)0.3344 (2)0.0722 (7)
H230.03470.55390.40210.087*
C240.03366 (17)0.5169 (3)0.2835 (3)0.0826 (9)
H240.07380.56710.31650.099*
C250.03905 (15)0.4505 (3)0.1829 (3)0.0794 (8)
H250.08280.45710.14720.095*
C260.01950 (13)0.3744 (2)0.1345 (2)0.0589 (6)
H260.01540.32890.06690.071*
C410.35810 (11)0.20446 (17)0.11368 (17)0.0424 (5)
C420.40331 (13)0.1842 (2)0.2224 (2)0.0575 (6)
H420.38980.12320.27150.069*
C430.46809 (15)0.2525 (3)0.2599 (3)0.0768 (8)
H430.49800.23820.33350.092*
C440.48710 (16)0.3400 (3)0.1879 (3)0.0832 (9)
C450.44411 (19)0.3651 (3)0.0811 (3)0.0933 (10)
H450.45820.42700.03350.112*
C460.37878 (15)0.2966 (2)0.0444 (2)0.0690 (7)
H460.34850.31340.02840.083*
C510.25938 (15)0.0996 (2)0.0456 (2)0.0570 (6)
C520.2159 (2)0.3005 (3)0.0069 (3)0.0973 (11)
H520.20390.30450.07420.117*
C530.1431 (3)0.2891 (4)0.0942 (4)0.1460 (17)
H53A0.11710.21570.07860.219*
H53B0.11050.35740.08610.219*
H53C0.15500.28680.17360.219*
C540.2622 (3)0.4083 (3)0.0300 (5)0.176 (2)
H54A0.27190.40600.11060.264*
H54B0.23440.48090.01770.264*
H54C0.31010.40760.02350.264*
C610.39422 (15)0.0780 (2)0.1293 (2)0.0732 (8)
H61A0.39780.06990.21220.110*
H61B0.38210.16050.11270.110*
H61C0.44240.05620.08230.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.0942 (13)0.1364 (18)0.175 (2)0.0579 (13)0.0032 (13)0.0562 (16)
O10.0724 (10)0.0546 (9)0.0250 (7)0.0222 (7)0.0091 (6)0.0010 (6)
O510.1363 (17)0.0548 (11)0.0841 (13)0.0338 (11)0.0475 (12)0.0155 (9)
O520.190 (5)0.060 (2)0.130 (5)0.038 (2)0.120 (5)0.015 (3)
O52'0.190 (5)0.060 (2)0.130 (5)0.038 (2)0.120 (5)0.015 (3)
N20.0446 (9)0.0414 (9)0.0246 (7)0.0058 (7)0.0059 (6)0.0001 (6)
N10.0469 (9)0.0430 (9)0.0267 (8)0.0047 (7)0.0086 (7)0.0009 (7)
C30.0464 (11)0.0372 (10)0.0232 (9)0.0012 (8)0.0061 (8)0.0001 (7)
C40.0446 (11)0.0376 (10)0.0310 (9)0.0030 (8)0.0069 (8)0.0035 (8)
C50.0473 (11)0.0386 (11)0.0419 (11)0.0041 (9)0.0038 (9)0.0050 (8)
C60.0508 (12)0.0374 (11)0.0502 (12)0.0023 (9)0.0156 (10)0.0006 (9)
C70.0554 (12)0.0447 (11)0.0358 (10)0.0026 (10)0.0167 (9)0.0001 (9)
C80.0424 (10)0.0357 (10)0.0308 (9)0.0002 (8)0.0069 (8)0.0005 (8)
C90.0421 (10)0.0347 (10)0.0278 (9)0.0000 (8)0.0039 (8)0.0007 (7)
C210.0466 (11)0.0391 (10)0.0318 (9)0.0043 (9)0.0020 (8)0.0020 (8)
C220.0616 (14)0.0564 (13)0.0436 (12)0.0109 (11)0.0086 (10)0.0102 (10)
C230.0874 (19)0.0681 (17)0.0581 (15)0.0247 (15)0.0020 (14)0.0201 (12)
C240.0769 (19)0.0825 (19)0.084 (2)0.0399 (16)0.0019 (15)0.0140 (16)
C250.0602 (16)0.097 (2)0.0829 (19)0.0294 (15)0.0176 (14)0.0055 (17)
C260.0548 (13)0.0712 (16)0.0519 (13)0.0120 (12)0.0126 (11)0.0084 (11)
C410.0474 (11)0.0405 (11)0.0393 (10)0.0046 (9)0.0064 (9)0.0047 (9)
C420.0580 (14)0.0562 (14)0.0531 (13)0.0080 (11)0.0070 (11)0.0061 (11)
C430.0652 (17)0.0789 (19)0.0766 (18)0.0082 (15)0.0182 (14)0.0249 (16)
C440.0624 (17)0.084 (2)0.100 (2)0.0204 (15)0.0017 (16)0.0396 (19)
C450.106 (2)0.086 (2)0.089 (2)0.0484 (19)0.0201 (19)0.0070 (17)
C460.0818 (17)0.0691 (16)0.0535 (14)0.0267 (14)0.0024 (12)0.0025 (12)
C510.0759 (16)0.0414 (12)0.0585 (14)0.0012 (11)0.0251 (12)0.0012 (10)
C520.142 (3)0.0652 (19)0.088 (2)0.047 (2)0.029 (2)0.0090 (16)
C530.155 (4)0.104 (3)0.172 (4)0.040 (3)0.003 (3)0.014 (3)
C540.198 (5)0.054 (2)0.274 (7)0.019 (3)0.033 (5)0.004 (3)
C610.0776 (17)0.0674 (16)0.0804 (18)0.0276 (14)0.0305 (14)0.0079 (14)
Geometric parameters (Å, º) top
F—C441.361 (3)C23—H230.9300
O1—C31.325 (2)C24—C251.375 (4)
O1—H10.8200C24—H240.9300
O51—C511.288 (3)C25—C261.376 (3)
O51—C521.472 (3)C25—H250.9300
O52—C511.225 (7)C26—H260.9300
O52'—C511.142 (18)C41—C461.371 (3)
N2—C31.369 (2)C41—C421.380 (3)
N2—N11.377 (2)C42—C431.378 (4)
N2—C211.423 (2)C42—H420.9300
N1—C81.328 (2)C43—C441.343 (4)
C3—C91.368 (3)C43—H430.9300
C4—C91.502 (2)C44—C451.354 (4)
C4—C411.519 (3)C45—C461.386 (4)
C4—C51.555 (3)C45—H450.9300
C4—H40.9800C46—H460.9300
C5—C511.517 (3)C52—C541.489 (6)
C5—C61.522 (3)C52—C531.499 (5)
C5—H50.9800C52—H520.9800
C6—C71.330 (3)C53—H53A0.9600
C6—C611.499 (3)C53—H53B0.9600
C7—C81.444 (3)C53—H53C0.9600
C7—H70.9300C54—H54A0.9600
C8—C91.400 (2)C54—H54B0.9600
C21—C261.376 (3)C54—H54C0.9600
C21—C221.378 (3)C61—H61A0.9600
C22—C231.372 (3)C61—H61B0.9600
C22—H220.9300C61—H61C0.9600
C23—C241.358 (4)
C3—O1—H1109.5C25—C26—H26120.5
C51—O51—C52119.8 (2)C46—C41—C42117.8 (2)
C3—N2—N1110.45 (14)C46—C41—C4122.59 (18)
C3—N2—C21129.06 (15)C42—C41—C4119.56 (19)
N1—N2—C21120.48 (14)C43—C42—C41121.5 (2)
C8—N1—N2104.75 (13)C43—C42—H42119.3
O1—C3—C9134.69 (16)C41—C42—H42119.3
O1—C3—N2117.61 (16)C44—C43—C42118.6 (3)
C9—C3—N2107.64 (15)C44—C43—H43120.7
C9—C4—C41113.30 (15)C42—C43—H43120.7
C9—C4—C5108.49 (15)C43—C44—C45122.4 (3)
C41—C4—C5110.14 (15)C43—C44—F119.3 (3)
C9—C4—H4108.3C45—C44—F118.3 (3)
C41—C4—H4108.3C44—C45—C46118.7 (3)
C5—C4—H4108.3C44—C45—H45120.7
C51—C5—C6111.98 (17)C46—C45—H45120.7
C51—C5—C4110.64 (16)C41—C46—C45121.0 (3)
C6—C5—C4114.21 (15)C41—C46—H46119.5
C51—C5—H5106.5C45—C46—H46119.5
C6—C5—H5106.5O52'—C51—O5238.2 (9)
C4—C5—H5106.5O52'—C51—O51116.8 (8)
C7—C6—C61122.76 (19)O52—C51—O51121.7 (3)
C7—C6—C5119.90 (17)O52'—C51—C5121.2 (7)
C61—C6—C5117.34 (18)O52—C51—C5123.0 (3)
C6—C7—C8120.09 (17)O51—C51—C5114.0 (2)
C6—C7—H7120.0O51—C52—C54105.7 (3)
C8—C7—H7120.0O51—C52—C53109.3 (3)
N1—C8—C9112.28 (16)C54—C52—C53112.7 (3)
N1—C8—C7125.88 (16)O51—C52—H52109.7
C9—C8—C7121.81 (17)C54—C52—H52109.7
C3—C9—C8104.85 (15)C53—C52—H52109.7
C3—C9—C4134.26 (16)C52—C53—H53A109.5
C8—C9—C4120.43 (16)C52—C53—H53B109.5
C26—C21—C22120.27 (19)H53A—C53—H53B109.5
C26—C21—N2120.68 (18)C52—C53—H53C109.5
C22—C21—N2119.04 (18)H53A—C53—H53C109.5
C23—C22—C21119.5 (2)H53B—C53—H53C109.5
C23—C22—H22120.2C52—C54—H54A109.5
C21—C22—H22120.2C52—C54—H54B109.5
C24—C23—C22120.9 (2)H54A—C54—H54B109.5
C24—C23—H23119.5C52—C54—H54C109.5
C22—C23—H23119.5H54A—C54—H54C109.5
C23—C24—C25119.5 (2)H54B—C54—H54C109.5
C23—C24—H24120.3C6—C61—H61A109.5
C25—C24—H24120.3C6—C61—H61B109.5
C24—C25—C26120.8 (2)H61A—C61—H61B109.5
C24—C25—H25119.6C6—C61—H61C109.5
C26—C25—H25119.6H61A—C61—H61C109.5
C21—C26—C25119.1 (2)H61B—C61—H61C109.5
C21—C26—H26120.5
C3—N2—N1—C81.81 (19)N1—N2—C21—C2238.0 (3)
C21—N2—N1—C8177.34 (16)C26—C21—C22—C230.7 (3)
N1—N2—C3—O1175.77 (16)N2—C21—C22—C23179.5 (2)
C21—N2—C3—O15.2 (3)C21—C22—C23—C240.3 (4)
N1—N2—C3—C91.8 (2)C22—C23—C24—C250.5 (5)
C21—N2—C3—C9177.29 (17)C23—C24—C25—C261.1 (5)
C9—C4—C5—C5183.40 (19)C22—C21—C26—C250.1 (4)
C41—C4—C5—C51152.07 (17)N2—C21—C26—C25180.0 (2)
C9—C4—C5—C644.0 (2)C24—C25—C26—C210.7 (4)
C41—C4—C5—C680.5 (2)C9—C4—C41—C4621.0 (3)
C51—C5—C6—C794.1 (2)C5—C4—C41—C46100.8 (2)
C4—C5—C6—C732.6 (3)C9—C4—C41—C42160.39 (18)
C51—C5—C6—C6185.5 (2)C5—C4—C41—C4277.9 (2)
C4—C5—C6—C61147.7 (2)C46—C41—C42—C431.2 (3)
C61—C6—C7—C8176.7 (2)C4—C41—C42—C43177.5 (2)
C5—C6—C7—C83.7 (3)C41—C42—C43—C440.2 (4)
N2—N1—C8—C91.2 (2)C42—C43—C44—C451.4 (5)
N2—N1—C8—C7179.28 (17)C42—C43—C44—F178.3 (2)
C6—C7—C8—N1170.79 (19)C43—C44—C45—C460.9 (5)
C6—C7—C8—C911.3 (3)F—C44—C45—C46178.7 (3)
O1—C3—C9—C8176.0 (2)C42—C41—C46—C451.6 (4)
N2—C3—C9—C81.0 (2)C4—C41—C46—C45177.0 (2)
O1—C3—C9—C44.1 (4)C44—C45—C46—C410.6 (5)
N2—C3—C9—C4172.85 (19)C52—O51—C51—O52'33.0 (12)
N1—C8—C9—C30.2 (2)C52—O51—C51—O5210.8 (7)
C7—C8—C9—C3178.33 (17)C52—O51—C51—C5177.8 (2)
N1—C8—C9—C4173.10 (16)C6—C5—C51—O52'114.5 (13)
C7—C8—C9—C45.1 (3)C4—C5—C51—O52'14.1 (13)
C41—C4—C9—C380.1 (3)C6—C5—C51—O52160.0 (6)
C5—C4—C9—C3157.3 (2)C4—C5—C51—O5231.3 (7)
C41—C4—C9—C890.8 (2)C6—C5—C51—O5133.2 (3)
C5—C4—C9—C831.8 (2)C4—C5—C51—O51161.8 (2)
C3—N2—C21—C2636.8 (3)C51—O51—C52—C54148.1 (3)
N1—N2—C21—C26142.2 (2)C51—O51—C52—C5390.4 (4)
C3—N2—C21—C22143.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.822.6143 (18)162
C22—H22···O52ii0.932.563.229 (6)129
C24—H24···Cg1iii0.932.773.694 (3)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H23FN2O3
Mr406.44
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)17.640 (1), 11.0295 (6), 11.3791 (6)
β (°) 99.133 (1)
V3)2185.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20548, 3843, 2970
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.135, 1.03
No. of reflections3843
No. of parameters279
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR92 (Altomare et al., 1994), ORTEP-3 (Farrugia, 1999) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.822.6143 (18)162
C22—H22···O52ii0.932.563.229 (6)129
C24—H24···Cg1iii0.932.773.694 (3)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z1/2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeylin, V. G., Colbry, N. L., Giordani, A. B., Goel, O. P., Johnson, D. R., Leeds, R. L., Leja, B., Lewis, E. P., Lustgarten, D. M., Showalter, H. D. H., Sercel, A. D., Reily, M. D., Uhlendorf, S. E. & Zisek, K. A. (1991). J. Heterocycl. Chem. 28, 517–527.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1346–o1347.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGeorge, V. D., Kim, U. T., Liang, J., Cordova, B., Klabe, R. M., Garber, S., Bacheler, L. T., Lam, G. N., Wright, M. R., Logue, K. A., Viitanen, S. E., Ko, S. S. & Trainor, G. L. (1998). J. Med. Chem. 41, 2411–2423.  Web of Science PubMed Google Scholar
First citationJain, A. C., Mehta, A. & Arya, P. (1987). Indian J. Chem. Sect. B, 26, 150–153.  Google Scholar
First citationPalazzo, G., Corsi, G., Baiocchi, L. & Silnerstrini, B. (1966). J. Med. Chem. 9, 38–41.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPopat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497–1501.  Google Scholar
First citationRoman, B. (1990). Pharmazie, 45, 214–217.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds