organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl-N-[1-(1H-pyrrol-2-yl)ethyl­­idene]aniline

aCollege of Chemistry and Chemical Engineering, Xi'an ShiYou University, Xi'an, Shaanxi 710065, People's Republic of China
*Correspondence e-mail: subiyun@xsyu.edu.cn

(Received 10 August 2012; accepted 3 September 2012; online 8 September 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H18N2, each of which features a syn disposition of the N atoms. In each mol­ecule, the pyrrole and benzene rings are essentially perpendicular, with dihedral angles of 78.90 (9) and 79.96 (9)°. In the crystal, the independent mol­ecules are connected by a pair of pyrrole–imino N—H⋯N hydrogen bonds, forming a two-mol­ecule aggregate.

Related literature

For general background to the imino­pyrrole unit, see: Small et al. (1998[Small, B. L., Bennett, A. M. A. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 4049-4050.]); Su et al. (2009a[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429-4440.],b[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051-1057.]); Britovsek et al. (2003[Britovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454-3465.]); Dawson et al. (2000[Dawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. 4, 459-466.]). For the pyrrole diimine unit, see: Matsuo et al. (2001[Matsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510-3518.]) and for the pyrrole monoimine unit, see: He et al. (2009[He, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713-721.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N2

  • Mr = 226.31

  • Monoclinic, C 2/c

  • a = 29.848 (4) Å

  • b = 7.9668 (11) Å

  • c = 26.325 (4) Å

  • β = 119.940 (2)°

  • V = 5424.6 (13) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.37 × 0.24 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.988

  • 14702 measured reflections

  • 5675 independent reflections

  • 2837 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 0.99

  • 5675 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4 0.86 2.23 3.029 (3) 154
N3—H3⋯N2 0.86 2.28 3.060 (3) 151

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, bis(imino)pyridine incorporated late transition metal catalysts have attracted much attention for their antioxidant properties and outstanding activities for olefin polymerization (Small et al., 1998; Su et al., 2009a,b). As a five-membered analogue of the pyridine ring (Matsuo et al., 2001; He et al., 2009), pyrrole has been frequently introduced into the skeleton of bis(imino)pyridine ligands to design new ligands and corresponding metal complexes (Britovsek et al., 2003; Dawson et al., 2000). Bis(imino)pyrrole is usually prepared from Schiff base condensation of 2,5-diacetylpyrrole and an aromatic amine (Matsuo et al., 2001). As a contribution to this research field, we present herein the synthesis of mono(imino)pyrrole from 2-acetyl pyrrole and 2,4,6-trimethylaniline, as well as the crystal structure of the title compound 2,4,6-trimethyl-N-[1-(1H-pyrrol-2-yl)ethylidene]aniline.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent molecules A and B. These two molecules are connected by a pair of nearly equal N(pyrrole)—H···N(imino) hydrogen bonds, Table 1. In each molecule the pyrrole ring and benzene ring are essentially perpendicular, with dihedral angles of 78.90 (9)° and 79.96 (9)°, respectively. The pyrrole rings of the molecules A and B present a nearly parallel spatial arrangement with a dihedral angle of 34.70 (11)°, and the benzene rings of the two molecules show a dihedral angle of 29.35 (13)°. Although the two molecules in the asymmetric unit are similar some minor differences in corresponding bond angles are evident, most notably C—N(imino)—C of 118.86 (19) and 120.2 (2)°, for A and B, respectively.

The crystal packing is stabilized by N—H···N hydrogen bonds (Table 1, Fig. 2) occurring between the independent molecules comprising the asymmetric unit.

Related literature top

For general background to the iminopyrrole unit, see: Small et al. (1998); Su et al. (2009a,b); Britovsek et al. (2003); Dawson et al. (2000). For the pyrrole diimine unit, see: Matsuo et al. (2001) and for the pyrrole monoimine unit, see: He et al. (2009).

Experimental top

The reagents 2-acetyl pyrrole (0.1968 g, 1.80 mmol) and 2,4,6-trimethylaniline (0.2638 g, 1.80 mmol) were placed in a 50 ml flask. After a few drops of acetic acid were added, the mixture was subjected to radiation in a 800 W microwave oven for 3 min and 2 min on a medium–heat setting. The reaction was monitored by TLC, and the crude product was purified by silica gel column chromatography (eluant: petroleum ether/ethyl acetate, 5:1 v/v). The colourless crystals of the title compound were obtained by recrystallization from ethanol (yield 0.085 g, 20.9%). M.pt: 401.4–407.6 K. IR (KBr): νCN 1646 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.16 (s, 2H, phenyl-H), 6.84 (t, 1H, pyrrole-H), 6.63 (t, 1H, pyrrole-H), 6.19 (d, 1H, pyrrole-H), 2.23 (s, 3H, –N=C(CH3)), 1.94 (d, 9H, phenyl-CH3). MS (EI): m/z 225 (M). Anal. Calcd for C15H18N2: C, 79.61; H, 8.02; N, 12.38. Found: C, 79.71; H, 7.362; N, 12.39.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. In the crystal structure, there is an 33 Å3 void, but the low electron density (0.18 e Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.

Structure description top

Recently, bis(imino)pyridine incorporated late transition metal catalysts have attracted much attention for their antioxidant properties and outstanding activities for olefin polymerization (Small et al., 1998; Su et al., 2009a,b). As a five-membered analogue of the pyridine ring (Matsuo et al., 2001; He et al., 2009), pyrrole has been frequently introduced into the skeleton of bis(imino)pyridine ligands to design new ligands and corresponding metal complexes (Britovsek et al., 2003; Dawson et al., 2000). Bis(imino)pyrrole is usually prepared from Schiff base condensation of 2,5-diacetylpyrrole and an aromatic amine (Matsuo et al., 2001). As a contribution to this research field, we present herein the synthesis of mono(imino)pyrrole from 2-acetyl pyrrole and 2,4,6-trimethylaniline, as well as the crystal structure of the title compound 2,4,6-trimethyl-N-[1-(1H-pyrrol-2-yl)ethylidene]aniline.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent molecules A and B. These two molecules are connected by a pair of nearly equal N(pyrrole)—H···N(imino) hydrogen bonds, Table 1. In each molecule the pyrrole ring and benzene ring are essentially perpendicular, with dihedral angles of 78.90 (9)° and 79.96 (9)°, respectively. The pyrrole rings of the molecules A and B present a nearly parallel spatial arrangement with a dihedral angle of 34.70 (11)°, and the benzene rings of the two molecules show a dihedral angle of 29.35 (13)°. Although the two molecules in the asymmetric unit are similar some minor differences in corresponding bond angles are evident, most notably C—N(imino)—C of 118.86 (19) and 120.2 (2)°, for A and B, respectively.

The crystal packing is stabilized by N—H···N hydrogen bonds (Table 1, Fig. 2) occurring between the independent molecules comprising the asymmetric unit.

For general background to the iminopyrrole unit, see: Small et al. (1998); Su et al. (2009a,b); Britovsek et al. (2003); Dawson et al. (2000). For the pyrrole diimine unit, see: Matsuo et al. (2001) and for the pyrrole monoimine unit, see: He et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Two independent molecules in the asymmetric unit of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,4,6-Trimethyl-N-[1-(1H-pyrrol-2-yl)ethylidene]aniline top
Crystal data top
C15H18N2Z = 16
Mr = 226.31F(000) = 1952
Monoclinic, C2/cDx = 1.108 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.848 (4) Åθ = 2.7–26.8°
b = 7.9668 (11) ŵ = 0.07 mm1
c = 26.325 (4) ÅT = 296 K
β = 119.940 (2)°Block, colourless
V = 5424.6 (13) Å30.37 × 0.24 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
5675 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ and ω scansθmax = 26.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3737
Tmin = 0.976, Tmax = 0.988k = 109
14702 measured reflectionsl = 2933
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.060P)2 + 0.950P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.028
5675 reflectionsΔρmax = 0.18 e Å3
316 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (3)
Crystal data top
C15H18N2V = 5424.6 (13) Å3
Mr = 226.31Z = 16
Monoclinic, C2/cMo Kα radiation
a = 29.848 (4) ŵ = 0.07 mm1
b = 7.9668 (11) ÅT = 296 K
c = 26.325 (4) Å0.37 × 0.24 × 0.18 mm
β = 119.940 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5675 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2837 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.988Rint = 0.054
14702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
5675 reflectionsΔρmin = 0.14 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17414 (8)0.0243 (2)0.55671 (9)0.0611 (6)
H10.14550.02920.53650.073*
N20.14363 (7)0.1397 (2)0.62945 (8)0.0530 (5)
N30.03652 (7)0.2001 (2)0.52301 (9)0.0578 (5)
H30.06680.15730.54370.069*
N40.08934 (7)0.1824 (2)0.45990 (8)0.0541 (5)
C10.19777 (11)0.1177 (3)0.53393 (13)0.0735 (8)
H1A0.18600.13340.49420.088*
C20.24147 (12)0.1846 (3)0.57869 (14)0.0759 (8)
H20.26470.25510.57540.091*
C30.24487 (10)0.1272 (3)0.63084 (12)0.0655 (7)
H3A0.27120.15200.66860.079*
C40.20241 (9)0.0274 (3)0.61649 (11)0.0523 (6)
C50.18741 (9)0.0629 (3)0.65329 (10)0.0499 (6)
C60.22526 (10)0.0608 (3)0.71790 (10)0.0679 (7)
H6A0.21530.14290.73710.102*
H6B0.25920.08660.72460.102*
H6C0.22550.04850.73340.102*
C70.12933 (8)0.2298 (3)0.66607 (9)0.0461 (6)
C80.10410 (9)0.1483 (3)0.69156 (10)0.0538 (6)
C90.08898 (9)0.2413 (3)0.72524 (10)0.0576 (7)
H90.07210.18690.74220.069*
C100.09813 (9)0.4116 (3)0.73436 (10)0.0551 (6)
C110.12191 (9)0.4894 (3)0.70688 (10)0.0545 (6)
H110.12810.60420.71220.065*
C120.13682 (8)0.4037 (3)0.67175 (10)0.0460 (6)
C130.09381 (12)0.0379 (3)0.68352 (13)0.0818 (9)
H13A0.07510.07170.70270.123*
H13B0.12610.09730.70030.123*
H13C0.07370.06320.64250.123*
C140.08290 (12)0.5089 (3)0.77271 (13)0.0853 (9)
H14A0.04860.47710.76350.128*
H14B0.08370.62700.76580.128*
H14C0.10670.48450.81320.128*
C150.16042 (10)0.4941 (3)0.64095 (12)0.0648 (7)
H15A0.15860.61300.64560.097*
H15B0.14180.46640.60000.097*
H15C0.19590.46090.65750.097*
C160.00067 (10)0.2114 (3)0.53974 (12)0.0686 (8)
H160.00470.17520.57540.082*
C170.04220 (10)0.2844 (3)0.49581 (12)0.0675 (7)
H170.07290.30600.49560.081*
C180.03163 (9)0.3212 (3)0.45087 (11)0.0633 (7)
H180.05390.37330.41550.076*
C190.01769 (9)0.2664 (3)0.46857 (10)0.0477 (6)
C200.04682 (9)0.2658 (3)0.43821 (10)0.0513 (6)
C210.02468 (10)0.3648 (4)0.38190 (12)0.0747 (8)
H21A0.04800.35990.36680.112*
H21B0.02000.47960.38940.112*
H21C0.00810.31800.35370.112*
C220.11795 (9)0.1761 (3)0.42984 (10)0.0496 (6)
C230.10903 (9)0.0452 (3)0.39048 (11)0.0588 (7)
C240.14020 (10)0.0325 (3)0.36587 (11)0.0628 (7)
H240.13430.05430.33960.075*
C250.17990 (9)0.1440 (3)0.37872 (11)0.0573 (6)
C260.18833 (10)0.2692 (3)0.41837 (12)0.0631 (7)
H260.21530.34410.42810.076*
C270.15826 (9)0.2884 (3)0.44436 (11)0.0560 (6)
C280.06663 (12)0.0811 (4)0.37605 (15)0.0992 (11)
H28A0.06690.16420.34980.149*
H28B0.03380.02490.35770.149*
H28C0.07220.13440.41140.149*
C290.21288 (11)0.1278 (4)0.35027 (13)0.0861 (9)
H29A0.24540.18330.37400.129*
H29B0.19540.17860.31210.129*
H29C0.21890.01120.34660.129*
C300.16873 (12)0.4276 (4)0.48756 (14)0.0938 (10)
H30A0.14220.51130.46980.141*
H30B0.20170.47730.49890.141*
H30C0.16900.38280.52160.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0641 (14)0.0634 (13)0.0535 (13)0.0138 (10)0.0275 (12)0.0060 (11)
N20.0544 (13)0.0537 (12)0.0478 (12)0.0072 (10)0.0231 (10)0.0029 (9)
N30.0505 (12)0.0746 (14)0.0548 (13)0.0111 (10)0.0311 (11)0.0053 (11)
N40.0511 (12)0.0681 (13)0.0496 (12)0.0031 (10)0.0302 (11)0.0017 (10)
C10.086 (2)0.0714 (18)0.0683 (19)0.0134 (16)0.0419 (18)0.0145 (15)
C20.080 (2)0.0676 (18)0.091 (2)0.0182 (15)0.051 (2)0.0020 (17)
C30.0669 (17)0.0607 (16)0.0685 (18)0.0152 (14)0.0334 (15)0.0070 (14)
C40.0565 (15)0.0469 (14)0.0550 (16)0.0057 (11)0.0290 (13)0.0022 (12)
C50.0534 (15)0.0474 (13)0.0476 (14)0.0027 (12)0.0243 (13)0.0019 (11)
C60.0625 (17)0.0840 (19)0.0529 (16)0.0136 (14)0.0256 (14)0.0061 (14)
C70.0441 (13)0.0492 (14)0.0386 (13)0.0055 (11)0.0157 (11)0.0008 (11)
C80.0566 (15)0.0509 (15)0.0505 (15)0.0007 (12)0.0241 (13)0.0010 (12)
C90.0607 (16)0.0672 (17)0.0491 (15)0.0000 (13)0.0306 (13)0.0087 (13)
C100.0570 (15)0.0602 (16)0.0479 (15)0.0095 (12)0.0261 (13)0.0007 (12)
C110.0569 (15)0.0461 (14)0.0578 (16)0.0020 (11)0.0266 (14)0.0009 (12)
C120.0416 (13)0.0491 (14)0.0447 (13)0.0073 (10)0.0196 (11)0.0050 (11)
C130.102 (2)0.0559 (17)0.093 (2)0.0117 (16)0.052 (2)0.0010 (16)
C140.106 (2)0.093 (2)0.074 (2)0.0111 (18)0.058 (2)0.0090 (17)
C150.0612 (16)0.0644 (17)0.0787 (19)0.0026 (13)0.0422 (16)0.0043 (14)
C160.0639 (18)0.091 (2)0.0681 (18)0.0114 (15)0.0458 (17)0.0108 (16)
C170.0550 (17)0.088 (2)0.0724 (19)0.0064 (14)0.0413 (16)0.0015 (16)
C180.0501 (15)0.0796 (18)0.0580 (16)0.0102 (13)0.0253 (14)0.0041 (14)
C190.0461 (14)0.0558 (14)0.0424 (14)0.0003 (11)0.0231 (12)0.0013 (12)
C200.0483 (15)0.0582 (15)0.0469 (14)0.0026 (12)0.0235 (12)0.0047 (12)
C210.0650 (18)0.096 (2)0.0638 (18)0.0155 (15)0.0324 (15)0.0206 (16)
C220.0490 (14)0.0601 (15)0.0439 (13)0.0045 (12)0.0263 (12)0.0000 (12)
C230.0562 (15)0.0745 (17)0.0548 (15)0.0115 (13)0.0345 (14)0.0128 (14)
C240.0662 (17)0.0772 (18)0.0537 (16)0.0068 (14)0.0364 (15)0.0142 (14)
C250.0545 (16)0.0723 (17)0.0547 (16)0.0036 (13)0.0344 (14)0.0014 (14)
C260.0566 (16)0.0676 (17)0.0726 (18)0.0109 (13)0.0378 (15)0.0057 (15)
C270.0519 (15)0.0628 (16)0.0556 (15)0.0032 (12)0.0284 (13)0.0073 (13)
C280.098 (2)0.111 (2)0.117 (3)0.046 (2)0.074 (2)0.049 (2)
C290.083 (2)0.110 (2)0.093 (2)0.0015 (18)0.064 (2)0.0007 (19)
C300.091 (2)0.093 (2)0.108 (3)0.0230 (18)0.058 (2)0.042 (2)
Geometric parameters (Å, º) top
N1—C11.354 (3)C14—H14B0.9600
N1—C41.365 (3)C14—H14C0.9600
N1—H10.8600C15—H15A0.9600
N2—C51.287 (3)C15—H15B0.9600
N2—C71.427 (3)C15—H15C0.9600
N3—C161.348 (3)C16—C171.355 (4)
N3—C191.358 (3)C16—H160.9300
N3—H30.8600C17—C181.399 (3)
N4—C201.286 (3)C17—H170.9300
N4—C221.426 (3)C18—C191.375 (3)
C1—C21.356 (4)C18—H180.9300
C1—H1A0.9300C19—C201.445 (3)
C2—C31.402 (3)C20—C211.510 (3)
C2—H20.9300C21—H21A0.9600
C3—C41.380 (3)C21—H21B0.9600
C3—H3A0.9300C21—H21C0.9600
C4—C51.445 (3)C22—C271.391 (3)
C5—C61.500 (3)C22—C231.399 (3)
C6—H6A0.9600C23—C241.377 (3)
C6—H6B0.9600C23—C281.509 (3)
C6—H6C0.9600C24—C251.381 (3)
C7—C81.394 (3)C24—H240.9300
C7—C121.400 (3)C25—C261.374 (3)
C8—C91.392 (3)C25—C291.511 (3)
C8—C131.508 (3)C26—C271.382 (3)
C9—C101.381 (3)C26—H260.9300
C9—H90.9300C27—C301.505 (3)
C10—C111.387 (3)C28—H28A0.9600
C10—C141.512 (3)C28—H28B0.9600
C11—C121.389 (3)C28—H28C0.9600
C11—H110.9300C29—H29A0.9600
C12—C151.498 (3)C29—H29B0.9600
C13—H13A0.9600C29—H29C0.9600
C13—H13B0.9600C30—H30A0.9600
C13—H13C0.9600C30—H30B0.9600
C14—H14A0.9600C30—H30C0.9600
C1—N1—C4110.0 (2)H15A—C15—H15B109.5
C1—N1—H1125.0C12—C15—H15C109.5
C4—N1—H1125.0H15A—C15—H15C109.5
C5—N2—C7118.86 (19)H15B—C15—H15C109.5
C16—N3—C19109.9 (2)N3—C16—C17108.4 (2)
C16—N3—H3125.0N3—C16—H16125.8
C19—N3—H3125.0C17—C16—H16125.8
C20—N4—C22120.2 (2)C16—C17—C18107.2 (2)
N1—C1—C2108.6 (2)C16—C17—H17126.4
N1—C1—H1A125.7C18—C17—H17126.4
C2—C1—H1A125.7C19—C18—C17107.6 (2)
C1—C2—C3106.9 (2)C19—C18—H18126.2
C1—C2—H2126.5C17—C18—H18126.2
C3—C2—H2126.5N3—C19—C18106.88 (19)
C4—C3—C2108.2 (3)N3—C19—C20122.4 (2)
C4—C3—H3A125.9C18—C19—C20130.7 (2)
C2—C3—H3A125.9N4—C20—C19119.3 (2)
N1—C4—C3106.3 (2)N4—C20—C21123.9 (2)
N1—C4—C5122.9 (2)C19—C20—C21116.9 (2)
C3—C4—C5130.7 (2)C20—C21—H21A109.5
N2—C5—C4119.2 (2)C20—C21—H21B109.5
N2—C5—C6124.4 (2)H21A—C21—H21B109.5
C4—C5—C6116.4 (2)C20—C21—H21C109.5
C5—C6—H6A109.5H21A—C21—H21C109.5
C5—C6—H6B109.5H21B—C21—H21C109.5
H6A—C6—H6B109.5C27—C22—C23120.1 (2)
C5—C6—H6C109.5C27—C22—N4120.0 (2)
H6A—C6—H6C109.5C23—C22—N4119.5 (2)
H6B—C6—H6C109.5C24—C23—C22118.7 (2)
C8—C7—C12120.3 (2)C24—C23—C28120.7 (2)
C8—C7—N2120.5 (2)C22—C23—C28120.6 (2)
C12—C7—N2119.0 (2)C23—C24—C25122.4 (2)
C9—C8—C7118.9 (2)C23—C24—H24118.8
C9—C8—C13120.3 (2)C25—C24—H24118.8
C7—C8—C13120.8 (2)C26—C25—C24117.5 (2)
C10—C9—C8122.3 (2)C26—C25—C29121.4 (2)
C10—C9—H9118.8C24—C25—C29121.0 (2)
C8—C9—H9118.8C25—C26—C27122.6 (2)
C9—C10—C11117.2 (2)C25—C26—H26118.7
C9—C10—C14121.4 (2)C27—C26—H26118.7
C11—C10—C14121.4 (2)C26—C27—C22118.6 (2)
C12—C11—C10123.0 (2)C26—C27—C30120.9 (2)
C12—C11—H11118.5C22—C27—C30120.4 (2)
C10—C11—H11118.5C23—C28—H28A109.5
C11—C12—C7118.1 (2)C23—C28—H28B109.5
C11—C12—C15121.2 (2)H28A—C28—H28B109.5
C7—C12—C15120.8 (2)C23—C28—H28C109.5
C8—C13—H13A109.5H28A—C28—H28C109.5
C8—C13—H13B109.5H28B—C28—H28C109.5
H13A—C13—H13B109.5C25—C29—H29A109.5
C8—C13—H13C109.5C25—C29—H29B109.5
H13A—C13—H13C109.5H29A—C29—H29B109.5
H13B—C13—H13C109.5C25—C29—H29C109.5
C10—C14—H14A109.5H29A—C29—H29C109.5
C10—C14—H14B109.5H29B—C29—H29C109.5
H14A—C14—H14B109.5C27—C30—H30A109.5
C10—C14—H14C109.5C27—C30—H30B109.5
H14A—C14—H14C109.5H30A—C30—H30B109.5
H14B—C14—H14C109.5C27—C30—H30C109.5
C12—C15—H15A109.5H30A—C30—H30C109.5
C12—C15—H15B109.5H30B—C30—H30C109.5
C4—N1—C1—C20.7 (3)C19—N3—C16—C170.5 (3)
N1—C1—C2—C30.9 (3)N3—C16—C17—C180.9 (3)
C1—C2—C3—C40.7 (3)C16—C17—C18—C191.0 (3)
C1—N1—C4—C30.3 (3)C16—N3—C19—C180.1 (3)
C1—N1—C4—C5179.1 (2)C16—N3—C19—C20177.5 (2)
C2—C3—C4—N10.3 (3)C17—C18—C19—N30.7 (3)
C2—C3—C4—C5179.6 (2)C17—C18—C19—C20176.7 (2)
C7—N2—C5—C4179.47 (19)C22—N4—C20—C19178.2 (2)
C7—N2—C5—C60.0 (3)C22—N4—C20—C211.6 (4)
N1—C4—C5—N25.5 (3)N3—C19—C20—N48.6 (4)
C3—C4—C5—N2175.4 (2)C18—C19—C20—N4168.4 (2)
N1—C4—C5—C6174.0 (2)N3—C19—C20—C21171.6 (2)
C3—C4—C5—C65.1 (4)C18—C19—C20—C2111.4 (4)
C5—N2—C7—C887.0 (3)C20—N4—C22—C2794.9 (3)
C5—N2—C7—C1298.7 (3)C20—N4—C22—C2392.1 (3)
C12—C7—C8—C93.4 (3)C27—C22—C23—C241.2 (4)
N2—C7—C8—C9177.6 (2)N4—C22—C23—C24174.2 (2)
C12—C7—C8—C13177.4 (2)C27—C22—C23—C28177.8 (3)
N2—C7—C8—C133.1 (3)N4—C22—C23—C284.8 (4)
C7—C8—C9—C100.1 (4)C22—C23—C24—C250.1 (4)
C13—C8—C9—C10179.2 (2)C28—C23—C24—C25178.9 (3)
C8—C9—C10—C112.0 (4)C23—C24—C25—C261.1 (4)
C8—C9—C10—C14178.0 (2)C23—C24—C25—C29179.1 (2)
C9—C10—C11—C120.5 (3)C24—C25—C26—C271.2 (4)
C14—C10—C11—C12179.4 (2)C29—C25—C26—C27179.0 (2)
C10—C11—C12—C72.8 (3)C25—C26—C27—C220.2 (4)
C10—C11—C12—C15177.5 (2)C25—C26—C27—C30179.9 (3)
C8—C7—C12—C114.7 (3)C23—C22—C27—C261.1 (4)
N2—C7—C12—C11179.01 (19)N4—C22—C27—C26174.1 (2)
C8—C7—C12—C15175.5 (2)C23—C22—C27—C30178.8 (3)
N2—C7—C12—C151.2 (3)N4—C22—C27—C305.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N40.862.233.029 (3)154
N3—H3···N20.862.283.060 (3)151

Experimental details

Crystal data
Chemical formulaC15H18N2
Mr226.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)29.848 (4), 7.9668 (11), 26.325 (4)
β (°) 119.940 (2)
V3)5424.6 (13)
Z16
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.24 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
14702, 5675, 2837
Rint0.054
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 0.99
No. of reflections5675
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N40.862.233.029 (3)154
N3—H3···N20.862.283.060 (3)151
 

Acknowledgements

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province (No. 2009JQ2006), the Scientific Research Plan Project of Shaanxi Education Department (12 J K0620) and the Important Science & Technology Specific Projects of Innovative Program of Shaanxi Province (No. 2010ZDKG-46).

References

First citationBritovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454–3465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. 4, 459–466.  Web of Science CSD CrossRef Google Scholar
First citationHe, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713–721.  Web of Science CrossRef CAS Google Scholar
First citationMatsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510–3518.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmall, B. L., Bennett, A. M. A. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 4049–4050.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429–4440.  Web of Science CrossRef CAS Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051–1057.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds