organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl-3,5,6-tri­phenyl­pyrazine

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, KSR College of Engineering, KSR Kalvi Nagar, Tiruchengode 637 215, Tamilnadu, India, cDepartment of Chemistry, Government Arts College, C. Mutlur 608 102, Chidambaram, Tamilnadu, India, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 13 September 2012; accepted 19 September 2012; online 26 September 2012)

In the title mol­ecule, C24H20N2, the pyrazine ring is significantly distorted from planarity, presumably due to steric crowding, and its conformation is well described as a flattened twist-boat. The benzene ring adjacent to the ethyl group forms dihedral angles of 53.79 (13) and 85.47 (12)° with the other benzene rings; the dihedral angle between adjacent benzene rings is 57.90 (12)°. The ethyl group is disordered over two positions; the site-occupancy factor of the major component is 0.546 (4). No hydrogen bonds are found in the crystal structure.

Related literature

For the biological properties of pyrazines and for a closely related crystal structure, see: Anuradha et al. (2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o106.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2

  • Mr = 336.42

  • Triclinic, [P \overline 1]

  • a = 9.2327 (9) Å

  • b = 9.8708 (11) Å

  • c = 10.6787 (14) Å

  • α = 79.604 (10)°

  • β = 70.351 (11)°

  • γ = 87.848 (8)°

  • V = 901.20 (19) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 123 K

  • 0.44 × 0.37 × 0.24 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.845, Tmax = 1.000

  • 5769 measured reflections

  • 3576 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.198

  • S = 1.05

  • 3576 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our investigations of pyrazine derivatives (Anuradha et al., 2009) to compare their chemical and biological activities, we have undertaken the X-ray crystal structure analysis of the title compound.

In the title molecule, Fig.1, the pyrazine ring adopts a flattened twist-boat conformation. The phenyl ring at position 5 makes a dihedral angle of 53.79 (13)° and 57.90 (12)° with the phenyl rings at position 3 and 6 respectively. The dihedral angle between the phenyl rings at positions 3 and 6 is 85.47 (12)°. The ethyl group is found to be disordered over two positions; the site occupancy factors refined to 0.546 (4) and 0.454 (4). No classical hydrogen bonds are found in the crystal structure.

Related literature top

For the biological properties of pyrazines and for a closely related crystal structure, see: Anuradha et al. (2009).

Experimental top

To a homogeneous solution of benzil (1.05 g, 0.005 mol) and 1-ethyl-2-phenyl-1,2-ethanediaminedihydrochloride (1.45 g, 0.005 mol) in ethanol (20 ml), sodium acetate trihydrate (2.04 g, 0.015 mol) was added. The precipitated sodium chloride was filtered off and the filtrate was refluxed for 2 h. On completion of the reaction, as indicated by TLC, the reaction mixture was poured into crushed ice and the resulting solid was filtered and purified by column chromatography on silica gel. Elution with benzene–petroleum ether (3:2 v/v) at 333–353 K gave the pure product. Yield 1.54 g (70%). The pure product was recrystallized in ethyl acetate, to obtain crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å , and with Uiso(H) = 1.2–1.5Ueq(C). The ethyl group is found to be disordered over two positions. The anisotropic displacement parameters of equivalent atoms were constrained to be equal; the site occupancy factors refined to 0.546 (4) and 0.454 (4).

Structure description top

As part of our investigations of pyrazine derivatives (Anuradha et al., 2009) to compare their chemical and biological activities, we have undertaken the X-ray crystal structure analysis of the title compound.

In the title molecule, Fig.1, the pyrazine ring adopts a flattened twist-boat conformation. The phenyl ring at position 5 makes a dihedral angle of 53.79 (13)° and 57.90 (12)° with the phenyl rings at position 3 and 6 respectively. The dihedral angle between the phenyl rings at positions 3 and 6 is 85.47 (12)°. The ethyl group is found to be disordered over two positions; the site occupancy factors refined to 0.546 (4) and 0.454 (4). No classical hydrogen bonds are found in the crystal structure.

For the biological properties of pyrazines and for a closely related crystal structure, see: Anuradha et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Only the major disorder component of ethyl group is shown.
2-Ethyl-3,5,6-triphenylpyrazine top
Crystal data top
C24H20N2Z = 2
Mr = 336.42F(000) = 356
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Melting point: 423 K
a = 9.2327 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.8708 (11) ÅCell parameters from 1596 reflections
c = 10.6787 (14) Åθ = 4.6–76.1°
α = 79.604 (10)°µ = 0.56 mm1
β = 70.351 (11)°T = 123 K
γ = 87.848 (8)°Prism, colourless
V = 901.20 (19) Å30.44 × 0.37 × 0.24 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3576 independent reflections
Radiation source: Enhance (Cu) X-ray Source2622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 76.3°, θmin = 4.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 612
Tmin = 0.845, Tmax = 1.000l = 1213
5769 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.1391P]
where P = (Fo2 + 2Fc2)/3
3576 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H20N2γ = 87.848 (8)°
Mr = 336.42V = 901.20 (19) Å3
Triclinic, P1Z = 2
a = 9.2327 (9) ÅCu Kα radiation
b = 9.8708 (11) ŵ = 0.56 mm1
c = 10.6787 (14) ÅT = 123 K
α = 79.604 (10)°0.44 × 0.37 × 0.24 mm
β = 70.351 (11)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3576 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2622 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 1.000Rint = 0.027
5769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
3576 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3945 (2)0.3594 (2)0.4200 (2)0.0631 (6)
N40.6170 (2)0.19621 (19)0.48492 (19)0.0528 (5)
C20.5434 (3)0.3820 (3)0.3449 (3)0.0645 (8)
C30.6537 (3)0.2913 (3)0.3721 (2)0.0580 (7)
C50.4699 (2)0.1805 (2)0.5654 (2)0.0498 (6)
C60.3549 (3)0.2558 (2)0.5259 (2)0.0534 (6)
C7A0.5713 (15)0.5231 (13)0.2548 (9)0.063 (3)0.546 (4)
C8A0.4983 (5)0.5205 (5)0.1381 (5)0.0663 (11)0.546 (4)
C310.8188 (3)0.2978 (2)0.2824 (2)0.0563 (7)
C320.8599 (3)0.3073 (3)0.1431 (3)0.0720 (9)
C331.0135 (3)0.3172 (3)0.0618 (3)0.0736 (9)
C341.1255 (3)0.3181 (3)0.1184 (3)0.0656 (8)
C351.0868 (3)0.3074 (3)0.2567 (3)0.0603 (7)
C360.9331 (3)0.2953 (2)0.3381 (2)0.0549 (7)
C510.4413 (2)0.0844 (2)0.6962 (2)0.0496 (6)
C520.5414 (2)0.0232 (2)0.7054 (2)0.0542 (6)
C530.5192 (3)0.1138 (3)0.8258 (3)0.0634 (8)
C540.3977 (3)0.0970 (3)0.9402 (2)0.0661 (8)
C550.2987 (3)0.0105 (3)0.9334 (2)0.0614 (8)
C560.3201 (3)0.1008 (2)0.8133 (2)0.0555 (7)
C610.1863 (2)0.2299 (2)0.5919 (2)0.0518 (6)
C620.1196 (3)0.0985 (2)0.6206 (2)0.0534 (6)
C630.0386 (3)0.0797 (3)0.6767 (2)0.0573 (7)
C640.1311 (3)0.1920 (3)0.7057 (2)0.0609 (7)
C650.0657 (3)0.3224 (3)0.6778 (3)0.0634 (8)
C660.0919 (3)0.3419 (3)0.6198 (3)0.0600 (7)
C8B0.4650 (6)0.5857 (6)0.2183 (6)0.0663 (11)0.454 (4)
C7B0.5880 (19)0.4955 (17)0.2180 (12)0.063 (3)0.454 (4)
H2A0.683020.544560.214180.0759*0.546 (4)
H1A0.522310.594710.308390.0759*0.546 (4)
H5A0.552420.453930.081650.0998*0.546 (4)
H3A0.389080.493580.179360.0998*0.546 (4)
H4A0.508890.612340.082170.0998*0.546 (4)
H341.230570.326080.062580.0787*
H351.165060.308350.295910.0724*
H360.906760.285150.433340.0659*
H520.626190.034600.627820.0650*
H530.587410.187630.829960.0760*
H540.382430.158911.022990.0793*
H550.215250.022271.011820.0737*
H560.251930.174850.810160.0665*
H620.182960.021510.601480.0640*
H630.083720.009780.695330.0688*
H640.239560.179120.744710.0730*
H650.129260.398790.698610.0761*
H660.136120.432030.598890.0720*
H320.782090.306910.103320.0864*
H331.040470.323360.033110.0883*
H6B0.617070.452540.136330.0759*0.454 (4)
H7B0.678430.548860.214480.0759*0.454 (4)
H8B0.427800.619620.304080.0998*0.454 (4)
H9B0.500930.663720.143460.0998*0.454 (4)
H10B0.381220.536110.207450.0998*0.454 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0495 (10)0.0628 (12)0.0572 (11)0.0002 (8)0.0045 (9)0.0135 (9)
N40.0437 (9)0.0559 (10)0.0440 (9)0.0028 (7)0.0019 (7)0.0032 (7)
C20.0504 (12)0.0650 (14)0.0596 (14)0.0040 (10)0.0071 (10)0.0148 (11)
C30.0484 (12)0.0617 (13)0.0491 (12)0.0004 (9)0.0039 (9)0.0037 (10)
C50.0461 (11)0.0481 (11)0.0434 (10)0.0039 (8)0.0041 (8)0.0000 (8)
C60.0469 (11)0.0496 (11)0.0490 (11)0.0025 (8)0.0030 (9)0.0027 (9)
C7A0.056 (3)0.067 (5)0.046 (5)0.006 (3)0.003 (4)0.004 (3)
C8A0.0526 (18)0.061 (2)0.062 (2)0.0075 (15)0.0023 (16)0.0137 (14)
C310.0470 (11)0.0547 (12)0.0492 (12)0.0005 (9)0.0011 (9)0.0073 (9)
C320.0575 (14)0.0932 (19)0.0529 (14)0.0104 (13)0.0094 (11)0.0032 (13)
C330.0674 (16)0.0890 (19)0.0448 (12)0.0002 (13)0.0012 (11)0.0007 (12)
C340.0462 (12)0.0663 (14)0.0578 (14)0.0037 (10)0.0065 (10)0.0085 (11)
C350.0470 (12)0.0590 (13)0.0598 (13)0.0027 (9)0.0077 (10)0.0075 (10)
C360.0523 (12)0.0479 (11)0.0483 (11)0.0042 (9)0.0031 (9)0.0049 (9)
C510.0447 (10)0.0514 (11)0.0409 (10)0.0042 (8)0.0038 (8)0.0006 (8)
C520.0448 (11)0.0610 (12)0.0435 (10)0.0097 (9)0.0023 (8)0.0018 (9)
C530.0590 (13)0.0684 (14)0.0510 (12)0.0170 (11)0.0109 (10)0.0013 (10)
C540.0655 (14)0.0749 (16)0.0421 (11)0.0110 (12)0.0083 (10)0.0089 (10)
C550.0559 (13)0.0727 (15)0.0400 (11)0.0087 (11)0.0007 (9)0.0024 (10)
C560.0508 (11)0.0591 (12)0.0440 (11)0.0109 (9)0.0035 (9)0.0038 (9)
C610.0449 (11)0.0534 (11)0.0410 (10)0.0047 (8)0.0008 (8)0.0047 (8)
C620.0487 (11)0.0532 (12)0.0409 (10)0.0065 (9)0.0008 (8)0.0035 (8)
C630.0511 (12)0.0597 (12)0.0437 (11)0.0021 (9)0.0005 (9)0.0036 (9)
C640.0425 (11)0.0780 (15)0.0441 (11)0.0050 (10)0.0029 (9)0.0001 (10)
C650.0527 (13)0.0662 (14)0.0562 (13)0.0146 (10)0.0022 (10)0.0068 (11)
C660.0538 (12)0.0553 (12)0.0579 (13)0.0056 (9)0.0062 (10)0.0022 (10)
C8B0.0526 (18)0.061 (2)0.062 (2)0.0075 (15)0.0023 (16)0.0137 (14)
C7B0.056 (3)0.067 (5)0.046 (5)0.006 (3)0.003 (4)0.004 (3)
Geometric parameters (Å, º) top
N1—C21.342 (4)C63—C641.389 (4)
N1—C61.338 (3)C64—C651.382 (4)
N4—C31.337 (3)C65—C661.382 (4)
N4—C51.338 (3)C7A—H1A0.9900
C2—C31.400 (4)C7A—H2A0.9900
C2—C7A1.519 (12)C7B—H6B0.9900
C2—C7B1.540 (14)C7B—H7B0.9900
C3—C311.500 (4)C8A—H5A0.9800
C5—C61.409 (3)C8A—H3A0.9800
C5—C511.488 (3)C8A—H4A0.9800
C6—C611.487 (3)C8B—H8B0.9800
C7A—C8A1.608 (13)C8B—H9B0.9800
C7B—C8B1.416 (19)C8B—H10B0.9800
C31—C361.372 (4)C32—H320.9500
C31—C321.392 (4)C33—H330.9500
C32—C331.388 (4)C34—H340.9500
C33—C341.363 (4)C35—H350.9500
C34—C351.383 (4)C36—H360.9500
C35—C361.389 (4)C52—H520.9500
C51—C521.393 (3)C53—H530.9500
C51—C561.400 (3)C54—H540.9500
C52—C531.384 (4)C55—H550.9500
C53—C541.384 (4)C56—H560.9500
C54—C551.382 (4)C62—H620.9500
C55—C561.382 (3)C63—H630.9500
C61—C661.394 (4)C64—H640.9500
C61—C621.395 (3)C65—H650.9500
C62—C631.385 (4)C66—H660.9500
C2—N1—C6119.3 (2)C8B—C7B—H6B109.00
C3—N4—C5118.9 (2)C8B—C7B—H7B109.00
N1—C2—C3119.7 (3)H6B—C7B—H7B108.00
N1—C2—C7A111.8 (6)C2—C7B—H7B109.00
N1—C2—C7B119.3 (7)C2—C7B—H6B109.00
C3—C2—C7A127.5 (6)H3A—C8A—H5A109.00
C3—C2—C7B120.5 (7)H3A—C8A—H4A109.00
N4—C3—C2120.7 (2)C7A—C8A—H3A109.00
N4—C3—C31116.1 (2)C7A—C8A—H4A109.00
C2—C3—C31123.1 (2)C7A—C8A—H5A109.00
N4—C5—C6120.09 (19)H4A—C8A—H5A109.00
N4—C5—C51115.46 (18)C7B—C8B—H8B109.00
C6—C5—C51124.42 (18)C7B—C8B—H10B109.00
N1—C6—C5119.9 (2)H8B—C8B—H9B109.00
N1—C6—C61114.7 (2)C7B—C8B—H9B109.00
C5—C6—C61125.43 (18)H9B—C8B—H10B109.00
C2—C7A—C8A108.0 (8)H8B—C8B—H10B110.00
C2—C7B—C8B111.3 (10)C33—C32—H32120.00
C3—C31—C32121.7 (2)C31—C32—H32120.00
C3—C31—C36119.54 (19)C32—C33—H33120.00
C32—C31—C36118.7 (2)C34—C33—H33120.00
C31—C32—C33120.6 (3)C35—C34—H34120.00
C32—C33—C34119.9 (3)C33—C34—H34120.00
C33—C34—C35120.3 (3)C36—C35—H35120.00
C34—C35—C36119.8 (3)C34—C35—H35120.00
C31—C36—C35120.7 (2)C31—C36—H36120.00
C5—C51—C52119.45 (18)C35—C36—H36120.00
C52—C51—C56118.07 (19)C53—C52—H52119.00
C5—C51—C56122.43 (18)C51—C52—H52119.00
C51—C52—C53121.0 (2)C54—C53—H53120.00
C52—C53—C54120.1 (3)C52—C53—H53120.00
C53—C54—C55119.6 (2)C53—C54—H54120.00
C54—C55—C56120.5 (2)C55—C54—H54120.00
C51—C56—C55120.7 (2)C56—C55—H55120.00
C6—C61—C62122.11 (19)C54—C55—H55120.00
C62—C61—C66119.2 (2)C51—C56—H56120.00
C6—C61—C66118.6 (2)C55—C56—H56120.00
C61—C62—C63120.3 (2)C61—C62—H62120.00
C62—C63—C64119.9 (3)C63—C62—H62120.00
C63—C64—C65120.1 (3)C62—C63—H63120.00
C64—C65—C66120.2 (3)C64—C63—H63120.00
C61—C66—C65120.3 (3)C65—C64—H64120.00
C2—C7A—H1A110.00C63—C64—H64120.00
C2—C7A—H2A110.00C66—C65—H65120.00
C8A—C7A—H1A110.00C64—C65—H65120.00
C8A—C7A—H2A110.00C61—C66—H66120.00
H1A—C7A—H2A108.00C65—C66—H66120.00
C6—N1—C2—C34.6 (4)N1—C6—C61—C6646.4 (3)
C6—N1—C2—C7A164.7 (5)C5—C6—C61—C6248.8 (3)
C2—N1—C6—C56.2 (3)C5—C6—C61—C66134.3 (2)
C2—N1—C6—C61173.1 (2)C3—C31—C32—C33178.1 (3)
C5—N4—C3—C26.1 (4)C36—C31—C32—C331.4 (4)
C5—N4—C3—C31176.5 (2)C3—C31—C36—C35177.1 (2)
C3—N4—C5—C64.8 (3)C32—C31—C36—C352.5 (3)
C3—N4—C5—C51173.2 (2)C31—C32—C33—C340.2 (4)
N1—C2—C3—N411.2 (4)C32—C33—C34—C350.8 (5)
N1—C2—C3—C31171.6 (2)C33—C34—C35—C360.2 (4)
C7A—C2—C3—N4156.3 (6)C34—C35—C36—C311.9 (4)
C7A—C2—C3—C3120.9 (7)C5—C51—C52—C53179.4 (2)
N1—C2—C7A—C8A70.8 (7)C56—C51—C52—C531.9 (3)
C3—C2—C7A—C8A120.9 (7)C5—C51—C56—C55179.0 (2)
N4—C3—C31—C32134.5 (2)C52—C51—C56—C551.6 (3)
N4—C3—C31—C3645.9 (3)C51—C52—C53—C541.2 (4)
C2—C3—C31—C3248.2 (4)C52—C53—C54—C550.1 (4)
C2—C3—C31—C36131.4 (3)C53—C54—C55—C560.2 (4)
N4—C5—C6—N111.3 (3)C54—C55—C56—C510.6 (4)
N4—C5—C6—C61167.98 (19)C6—C61—C62—C63177.1 (2)
C51—C5—C6—N1166.6 (2)C66—C61—C62—C630.3 (3)
C51—C5—C6—C6114.1 (3)C6—C61—C66—C65178.3 (2)
N4—C5—C51—C5227.8 (3)C62—C61—C66—C651.3 (4)
N4—C5—C51—C56149.6 (2)C61—C62—C63—C640.6 (3)
C6—C5—C51—C52154.2 (2)C62—C63—C64—C650.5 (3)
C6—C5—C51—C5628.4 (3)C63—C64—C65—C660.6 (4)
N1—C6—C61—C62130.5 (2)C64—C65—C66—C611.5 (4)

Experimental details

Crystal data
Chemical formulaC24H20N2
Mr336.42
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)9.2327 (9), 9.8708 (11), 10.6787 (14)
α, β, γ (°)79.604 (10), 70.351 (11), 87.848 (8)
V3)901.20 (19)
Z2
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.44 × 0.37 × 0.24
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.845, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5769, 3576, 2622
Rint0.027
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.198, 1.05
No. of reflections3576
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds