organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[1-(3-Hy­dr­oxy­benz­yl)-1H-benzimid­azol-2-yl]phenol di­methyl sulfoxide monosolvate

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF 04510, Mexico, and bCiencias Básicas e Ingeniería, Recursos de la Tierra, Universidad, Autónoma Metropolitana. Av. Hidalgo Poniente, La Estacón Lerma, Lerma de, Villada, Estado de México, CP52006, Mexico
*Correspondence e-mail: rrm@uaem.mx

(Received 20 September 2012; accepted 23 September 2012; online 29 September 2012)

Crystals of the title compound were obtained as a 1:1 dimethyl sulfoxide solvate, C20H16N2O2·C2H6O. The mol­ecular conformation of the organic mol­ecule is similar to that in the previously reported unsolvated structure [Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374-o1375.]). Acta Cryst. E65, o1374–o1375]. Thus, the dihedral angles formed by the benzimidazole moiety with the two benzene rings are 57.54 (4) and 76.22 (5)°, and the dihedral angle between the benzene rings is 89.23 (5)°. In the crystal, a three-dimensional network features O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, as well as C—H⋯O and C—H⋯π inter­actions.

Related literature

For potential applications of benzimidazoles in medicine, see: Narasimhan et al. (2012[Narasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269-283.]); Alper et al. (2003[Alper, S., Temiz Arpaci, O., Şener Aki, E. & Yalçin, I. (2003). Il Farmaco, 58, 497-507.]); Sharma et al. (2011[Sharma, S., Sharma, P. K., Kumar, N. & Dudhe, R. (2011). Biomed. Pharmacother. 65, 244-251.]). For coordination compounds of benzimidazole deriv­atives, see: Tellez et al. (2008[Tellez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, v, 245-275.]). For the crystal structure of 3-[1-(3-hy­droxy­benz­yl)-1H-benzimidazol-2-yl]phenol, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374-o1375.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O2·C2H6OS

  • Mr = 394.48

  • Triclinic, [P \overline 1]

  • a = 8.892 (1) Å

  • b = 9.1951 (10) Å

  • c = 13.1515 (14) Å

  • α = 85.399 (2)°

  • β = 71.947 (2)°

  • γ = 77.442 (2)°

  • V = 997.81 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.36 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: analytical (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.618, Tmax = 0.752

  • 8327 measured reflections

  • 3656 independent reflections

  • 2912 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.00

  • 3656 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C11–C16 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.85 (1) 1.83 (1) 2.6804 (19) 176 (2)
O2—H2⋯S1i 0.85 (1) 2.84 (1) 3.6209 (14) 154 (2)
O1—H1⋯N3ii 0.86 (1) 1.88 (2) 2.7316 (19) 172 (2)
C18—H18⋯O3i 0.93 2.58 3.260 (2) 130
C23—H23C⋯O3iii 0.96 2.72 3.643 (3) 162
C10—H10BCg1iv 0.97 2.95 3.622 (2) 127
C5—H5⋯Cg2v 0.93 2.76 3.624 (2) 156
C23—H23BCg3vi 0.96 2.86 3.679 (2) 144
Symmetry codes: (i) x, y+1, z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y, -z; (iv) -x+1, -y+2, -z+1; (v) x, y+1, z; (vi) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole and its derivatives are of significant importance in medicinal chemistry. In these species, the presence of the benzimidazole heterocycle provides a vast variety of potential biological and clinical applications (Narasimhan et al., 2012). Benzimidazole derivatives with potential biological activities have been widely studied for the treatment of different illnesses such as cancer (Alper et al., 2003), infectious diseases, metabolic and cardiovascular disorders, allergies, tuberculosis (Sharma et al., 2011) and different inflammatory conditions. Thus, in order to increase the activity of benzimidazole derivatives its coordination behaviour with transition metals such as Pd(II), Co(II), Ni(II), Cu(II) and Cd(II) (Tellez et al., 2008) has been explored.

The crystal structure of 3-[1-(3-hydroxybenzyl)-1H-benzimidazol-2-yl]phenol was first reported by Eltayeb et al. (2009). Thus, in this opportunity we would like to report the DMSO solvated structure of 3-[1-(3-hydroxybenzyl)-1H-benzimidazol-2-yl]phenol (Fig. 1).

In this molecule, the dihedral angles formed by the benzimidazole moiety with the two benzene rings (C11–C16 and C17–C22) are 57.54 (4) and 76.22 (5)° respectively. The two benzene rings (C11–C16 and C17–C22) are forming a dihedral angle of 89.23 (5)°, these values are similar to those reported previously (Eltayeb et al. 2009).

The crystal lattice of the title compound is stabilized by the presence of hydrogen bonds (O—H···N, O—H···O, O—H···S, C—H···O and C—H···π), Table 1. The O—H···N interactions associate two molecules to generate an 18-membered macrocycle with crystallographic inversion symmetry, that are interconnected each other by C—H···π interactions between methylene (C10—H10B) group and the aromatic ring (C4—C9) of the neighbouring molecules, Fig. 2. The C5—H5···π and O—H···O interactions stabilize the three-dimensional arrangement. Finally, the DMSO molecules are associate by C—H···O interactions thus generating eight-membered motifs, by additionally exhibiting interactions with the benzimidazole of the type O2—H2···S1.

Related literature top

For potential applications of benzimidazoles in medicine, see: Narasimhan et al. (2012); Alper et al. (2003); Sharma et al. (2011). For coordination compounds of benzimidazole derivatives, see: Tellez et al. (2008). For the crystal structure of 3-[1-(3-hydroxybenzyl)-1H-benzimidazol-2-yl]phenol, see: Eltayeb et al. (2009).

Experimental top

To a solution of 3-hydroxybenzaldehyde (0.320 g, 2.0 mmol) in CH2Cl2, 0.034 g (0.2 mmol) of p-toluenesulfonic acid, 0.7 g of o-phenylenediamine (6.4 mmol) and molecular sieves were added. The mixture was stirred at room temperature for 24 h. After this time the resulting solution was filtered and the solvent evaporated under vacuum affording 3-[1-(3-Hydroxybenzyl)-1H-benzimidazol-2-yl]phenol as a microcrystalline white powder. Single crystals suitable for X-ray diffraction analysis were obtained from a dimethyl sulfoxide solution of the compound.

Refinement top

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H =0.97 Å for methylene H, and C—H= 0.96 Å for methyl H), and refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atoms. The hydroxyl H atoms were located in a difference map and refined with O–H = 0.85±0.01 Å, and with Uiso(H) = 1.2Ueq(O).

Structure description top

Benzimidazole and its derivatives are of significant importance in medicinal chemistry. In these species, the presence of the benzimidazole heterocycle provides a vast variety of potential biological and clinical applications (Narasimhan et al., 2012). Benzimidazole derivatives with potential biological activities have been widely studied for the treatment of different illnesses such as cancer (Alper et al., 2003), infectious diseases, metabolic and cardiovascular disorders, allergies, tuberculosis (Sharma et al., 2011) and different inflammatory conditions. Thus, in order to increase the activity of benzimidazole derivatives its coordination behaviour with transition metals such as Pd(II), Co(II), Ni(II), Cu(II) and Cd(II) (Tellez et al., 2008) has been explored.

The crystal structure of 3-[1-(3-hydroxybenzyl)-1H-benzimidazol-2-yl]phenol was first reported by Eltayeb et al. (2009). Thus, in this opportunity we would like to report the DMSO solvated structure of 3-[1-(3-hydroxybenzyl)-1H-benzimidazol-2-yl]phenol (Fig. 1).

In this molecule, the dihedral angles formed by the benzimidazole moiety with the two benzene rings (C11–C16 and C17–C22) are 57.54 (4) and 76.22 (5)° respectively. The two benzene rings (C11–C16 and C17–C22) are forming a dihedral angle of 89.23 (5)°, these values are similar to those reported previously (Eltayeb et al. 2009).

The crystal lattice of the title compound is stabilized by the presence of hydrogen bonds (O—H···N, O—H···O, O—H···S, C—H···O and C—H···π), Table 1. The O—H···N interactions associate two molecules to generate an 18-membered macrocycle with crystallographic inversion symmetry, that are interconnected each other by C—H···π interactions between methylene (C10—H10B) group and the aromatic ring (C4—C9) of the neighbouring molecules, Fig. 2. The C5—H5···π and O—H···O interactions stabilize the three-dimensional arrangement. Finally, the DMSO molecules are associate by C—H···O interactions thus generating eight-membered motifs, by additionally exhibiting interactions with the benzimidazole of the type O2—H2···S1.

For potential applications of benzimidazoles in medicine, see: Narasimhan et al. (2012); Alper et al. (2003); Sharma et al. (2011). For coordination compounds of benzimidazole derivatives, see: Tellez et al. (2008). For the crystal structure of 3-[1-(3-hydroxybenzyl)-1H-benzimidazol-2-yl]phenol, see: Eltayeb et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A two-dimensional sheet structure formed through hydrogen bonds interactions parallel to the plane ac, hydrogen bonds are showing by dashed lines.
3-[1-(3-Hydroxybenzyl)-1H-benzimidazol-2-yl]phenol dimethyl sulfoxide monosolvate top
Crystal data top
C20H16N2O2·C2H6OSZ = 2
Mr = 394.48F(000) = 416
Triclinic, P1Dx = 1.313 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.892 (1) ÅCell parameters from 4929 reflections
b = 9.1951 (10) Åθ = 2.5–25.4°
c = 13.1515 (14) ŵ = 0.19 mm1
α = 85.399 (2)°T = 298 K
β = 71.947 (2)°Prism, colourless
γ = 77.442 (2)°0.36 × 0.24 × 0.20 mm
V = 997.81 (19) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3656 independent reflections
Radiation source: fine-focus sealed tube2912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.6°
ω scansh = 1010
Absorption correction: analytical
(SHELXTL; Sheldrick, 2008)
k = 1111
Tmin = 0.618, Tmax = 0.752l = 1515
8327 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0674P)2]
where P = (Fo2 + 2Fc2)/3
3656 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H16N2O2·C2H6OSγ = 77.442 (2)°
Mr = 394.48V = 997.81 (19) Å3
Triclinic, P1Z = 2
a = 8.892 (1) ÅMo Kα radiation
b = 9.1951 (10) ŵ = 0.19 mm1
c = 13.1515 (14) ÅT = 298 K
α = 85.399 (2)°0.36 × 0.24 × 0.20 mm
β = 71.947 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3656 independent reflections
Absorption correction: analytical
(SHELXTL; Sheldrick, 2008)
2912 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.752Rint = 0.046
8327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
3656 reflectionsΔρmin = 0.32 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19023 (5)0.03592 (5)0.01994 (4)0.05482 (17)
O10.06161 (15)0.77881 (14)0.21845 (10)0.0553 (3)
H10.002 (2)0.8399 (19)0.2668 (13)0.066*
O20.15779 (16)0.67344 (14)0.95005 (9)0.0580 (3)
H20.201 (2)0.7438 (18)0.9583 (16)0.070*
O30.29883 (16)0.10268 (15)0.03524 (10)0.0635 (4)
N10.31522 (15)0.88121 (14)0.49775 (10)0.0394 (3)
C20.21131 (18)0.90591 (18)0.59903 (12)0.0393 (4)
N30.15587 (16)1.04883 (15)0.61919 (10)0.0431 (3)
C40.2058 (2)1.27426 (19)0.50197 (15)0.0524 (4)
H40.13741.34420.55190.063*
C50.2900 (2)1.3174 (2)0.40181 (16)0.0585 (5)
H50.27781.41820.38370.070*
C60.3932 (2)1.2133 (2)0.32689 (15)0.0590 (5)
H60.44921.24630.26000.071*
C70.4145 (2)1.0629 (2)0.34927 (14)0.0526 (4)
H70.48400.99340.29940.063*
C80.32694 (19)1.01973 (18)0.45009 (13)0.0417 (4)
C90.22605 (19)1.12258 (18)0.52616 (13)0.0428 (4)
C100.4119 (2)0.74040 (19)0.45014 (13)0.0455 (4)
H10A0.39160.66100.50260.055*
H10B0.52540.74420.43240.055*
C110.37785 (18)0.70334 (17)0.35053 (12)0.0389 (4)
C120.23086 (19)0.75994 (17)0.33238 (12)0.0400 (4)
H120.15090.82360.38180.048*
C130.2017 (2)0.72253 (17)0.24104 (12)0.0421 (4)
C140.3202 (2)0.62518 (19)0.16856 (13)0.0506 (4)
H140.30130.59810.10770.061*
C150.4652 (2)0.5692 (2)0.18709 (14)0.0537 (5)
H150.54440.50390.13830.064*
C160.4962 (2)0.60800 (19)0.27712 (13)0.0482 (4)
H160.59590.57020.28810.058*
C170.16366 (18)0.78669 (18)0.67598 (12)0.0404 (4)
C180.18420 (18)0.78701 (17)0.77632 (12)0.0410 (4)
H180.23030.86010.79270.049*
C190.13664 (19)0.67954 (18)0.85205 (12)0.0429 (4)
C200.0629 (2)0.57380 (19)0.82858 (14)0.0498 (4)
H200.02780.50280.87980.060*
C210.0419 (2)0.5743 (2)0.72924 (15)0.0554 (5)
H210.00720.50290.71360.066*
C220.0925 (2)0.6792 (2)0.65240 (14)0.0524 (4)
H220.07880.67770.58520.063*
C230.2768 (3)0.0778 (2)0.11599 (16)0.0656 (5)
H23A0.28260.00430.16550.098*
H23B0.21120.16560.15400.098*
H23C0.38350.09490.08040.098*
C240.2345 (3)0.1831 (3)0.07215 (18)0.0875 (7)
H24A0.34930.17560.09840.131*
H24B0.18440.27680.03720.131*
H24C0.19360.17670.13090.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0502 (3)0.0617 (3)0.0535 (3)0.0095 (2)0.0182 (2)0.0014 (2)
O10.0558 (8)0.0622 (8)0.0513 (7)0.0008 (6)0.0261 (6)0.0111 (6)
O20.0754 (9)0.0598 (8)0.0412 (7)0.0147 (7)0.0218 (6)0.0059 (6)
O30.0678 (8)0.0618 (8)0.0617 (8)0.0089 (7)0.0206 (7)0.0126 (6)
N10.0410 (7)0.0417 (8)0.0385 (7)0.0093 (6)0.0155 (6)0.0009 (6)
C20.0398 (8)0.0451 (9)0.0378 (8)0.0094 (7)0.0176 (7)0.0025 (7)
N30.0457 (8)0.0430 (8)0.0430 (7)0.0095 (6)0.0160 (6)0.0011 (6)
C40.0572 (11)0.0447 (10)0.0618 (11)0.0121 (8)0.0259 (9)0.0007 (8)
C50.0646 (12)0.0502 (11)0.0734 (13)0.0230 (10)0.0350 (11)0.0155 (10)
C60.0592 (11)0.0679 (13)0.0573 (11)0.0285 (10)0.0220 (10)0.0174 (10)
C70.0501 (10)0.0625 (12)0.0474 (10)0.0175 (9)0.0145 (8)0.0022 (9)
C80.0422 (9)0.0468 (9)0.0429 (9)0.0135 (7)0.0198 (7)0.0019 (7)
C90.0442 (9)0.0454 (9)0.0465 (9)0.0134 (7)0.0218 (8)0.0006 (7)
C100.0413 (9)0.0474 (9)0.0479 (9)0.0035 (7)0.0168 (8)0.0021 (8)
C110.0409 (8)0.0348 (8)0.0392 (8)0.0087 (7)0.0098 (7)0.0028 (7)
C120.0398 (8)0.0372 (8)0.0406 (9)0.0054 (7)0.0093 (7)0.0046 (7)
C130.0478 (9)0.0380 (9)0.0420 (9)0.0103 (7)0.0154 (7)0.0023 (7)
C140.0649 (12)0.0473 (10)0.0381 (9)0.0087 (9)0.0138 (8)0.0057 (8)
C150.0560 (11)0.0495 (10)0.0446 (10)0.0003 (9)0.0052 (8)0.0069 (8)
C160.0414 (9)0.0478 (10)0.0490 (10)0.0033 (8)0.0086 (8)0.0003 (8)
C170.0382 (8)0.0424 (9)0.0413 (9)0.0068 (7)0.0136 (7)0.0012 (7)
C180.0394 (8)0.0409 (9)0.0427 (9)0.0065 (7)0.0126 (7)0.0035 (7)
C190.0416 (9)0.0419 (9)0.0412 (9)0.0003 (7)0.0120 (7)0.0013 (7)
C200.0529 (10)0.0400 (9)0.0506 (10)0.0088 (8)0.0085 (8)0.0042 (8)
C210.0616 (11)0.0486 (10)0.0621 (11)0.0227 (9)0.0190 (9)0.0030 (9)
C220.0604 (11)0.0569 (11)0.0483 (10)0.0207 (9)0.0222 (9)0.0011 (8)
C230.0727 (13)0.0642 (13)0.0660 (13)0.0122 (10)0.0292 (11)0.0068 (10)
C240.0954 (18)0.0770 (16)0.0777 (16)0.0072 (14)0.0207 (14)0.0205 (13)
Geometric parameters (Å, º) top
S1—O31.5040 (14)C11—C121.383 (2)
S1—C241.768 (2)C11—C161.383 (2)
S1—C231.7739 (18)C12—C131.388 (2)
O1—C131.353 (2)C12—H120.9300
O1—H10.857 (9)C13—C141.387 (2)
O2—C191.3541 (19)C14—C151.368 (3)
O2—H20.848 (9)C14—H140.9300
N1—C21.3689 (19)C15—C161.385 (2)
N1—C81.384 (2)C15—H150.9300
N1—C101.456 (2)C16—H160.9300
C2—N31.317 (2)C17—C221.385 (2)
C2—C171.471 (2)C17—C181.388 (2)
N3—C91.387 (2)C18—C191.382 (2)
C4—C51.374 (3)C18—H180.9300
C4—C91.391 (2)C19—C201.386 (2)
C4—H40.9300C20—C211.375 (2)
C5—C61.392 (3)C20—H200.9300
C5—H50.9300C21—C221.380 (2)
C6—C71.375 (3)C21—H210.9300
C6—H60.9300C22—H220.9300
C7—C81.390 (2)C23—H23A0.9600
C7—H70.9300C23—H23B0.9600
C8—C91.388 (2)C23—H23C0.9600
C10—C111.512 (2)C24—H24A0.9600
C10—H10A0.9700C24—H24B0.9600
C10—H10B0.9700C24—H24C0.9600
O3—S1—C24105.19 (10)O1—C13—C14117.93 (14)
O3—S1—C23106.18 (9)O1—C13—C12122.59 (14)
C24—S1—C2398.83 (11)C14—C13—C12119.47 (15)
C13—O1—H1110.5 (14)C15—C14—C13119.66 (15)
C19—O2—H2111.5 (14)C15—C14—H14120.2
C2—N1—C8106.73 (13)C13—C14—H14120.2
C2—N1—C10128.31 (13)C14—C15—C16121.20 (16)
C8—N1—C10124.60 (13)C14—C15—H15119.4
N3—C2—N1112.33 (14)C16—C15—H15119.4
N3—C2—C17123.64 (14)C11—C16—C15119.50 (16)
N1—C2—C17124.01 (14)C11—C16—H16120.3
C2—N3—C9105.51 (13)C15—C16—H16120.3
C5—C4—C9117.81 (18)C22—C17—C18119.58 (15)
C5—C4—H4121.1C22—C17—C2121.67 (14)
C9—C4—H4121.1C18—C17—C2118.67 (14)
C4—C5—C6121.35 (17)C19—C18—C17120.52 (15)
C4—C5—H5119.3C19—C18—H18119.7
C6—C5—H5119.3C17—C18—H18119.7
C7—C6—C5121.67 (17)O2—C19—C18122.55 (15)
C7—C6—H6119.2O2—C19—C20117.87 (15)
C5—C6—H6119.2C18—C19—C20119.58 (15)
C6—C7—C8116.73 (18)C21—C20—C19119.72 (16)
C6—C7—H7121.6C21—C20—H20120.1
C8—C7—H7121.6C19—C20—H20120.1
N1—C8—C9105.65 (14)C20—C21—C22120.98 (16)
N1—C8—C7132.22 (16)C20—C21—H21119.5
C9—C8—C7122.13 (16)C22—C21—H21119.5
N3—C9—C8109.77 (14)C21—C22—C17119.58 (16)
N3—C9—C4129.92 (16)C21—C22—H22120.2
C8—C9—C4120.29 (16)C17—C22—H22120.2
N1—C10—C11113.71 (13)S1—C23—H23A109.5
N1—C10—H10A108.8S1—C23—H23B109.5
C11—C10—H10A108.8H23A—C23—H23B109.5
N1—C10—H10B108.8S1—C23—H23C109.5
C11—C10—H10B108.8H23A—C23—H23C109.5
H10A—C10—H10B107.7H23B—C23—H23C109.5
C12—C11—C16119.56 (15)S1—C24—H24A109.5
C12—C11—C10121.69 (14)S1—C24—H24B109.5
C16—C11—C10118.74 (14)H24A—C24—H24B109.5
C11—C12—C13120.60 (15)S1—C24—H24C109.5
C11—C12—H12119.7H24A—C24—H24C109.5
C13—C12—H12119.7H24B—C24—H24C109.5
C8—N1—C2—N30.23 (17)N1—C10—C11—C16156.07 (14)
C10—N1—C2—N3173.56 (13)C16—C11—C12—C130.3 (2)
C8—N1—C2—C17178.88 (13)C10—C11—C12—C13179.05 (14)
C10—N1—C2—C177.8 (2)C11—C12—C13—O1177.93 (14)
N1—C2—N3—C90.35 (17)C11—C12—C13—C141.2 (2)
C17—C2—N3—C9178.30 (13)O1—C13—C14—C15178.17 (16)
C9—C4—C5—C60.4 (3)C12—C13—C14—C151.0 (2)
C4—C5—C6—C70.6 (3)C13—C14—C15—C160.0 (3)
C5—C6—C7—C80.5 (3)C12—C11—C16—C150.7 (2)
C2—N1—C8—C90.70 (16)C10—C11—C16—C15178.00 (15)
C10—N1—C8—C9174.35 (12)C14—C15—C16—C111.0 (3)
C2—N1—C8—C7179.60 (16)N3—C2—C17—C22121.37 (18)
C10—N1—C8—C76.0 (3)N1—C2—C17—C2257.1 (2)
C6—C7—C8—N1177.93 (16)N3—C2—C17—C1855.6 (2)
C6—C7—C8—C91.7 (2)N1—C2—C17—C18125.91 (16)
C2—N3—C9—C80.81 (17)C22—C17—C18—C191.1 (2)
C2—N3—C9—C4177.74 (16)C2—C17—C18—C19178.10 (14)
N1—C8—C9—N30.94 (16)C17—C18—C19—O2178.41 (14)
C7—C8—C9—N3179.32 (14)C17—C18—C19—C202.2 (2)
N1—C8—C9—C4177.77 (14)O2—C19—C20—C21178.78 (15)
C7—C8—C9—C42.0 (2)C18—C19—C20—C211.8 (2)
C5—C4—C9—N3179.26 (16)C19—C20—C21—C220.3 (3)
C5—C4—C9—C80.8 (2)C20—C21—C22—C170.8 (3)
C2—N1—C10—C11121.77 (16)C18—C17—C22—C210.4 (2)
C8—N1—C10—C1166.00 (19)C2—C17—C22—C21176.51 (16)
N1—C10—C11—C1225.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C11–C16 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.85 (1)1.83 (1)2.6804 (19)176 (2)
O2—H2···S1i0.85 (1)2.84 (1)3.6209 (14)154 (2)
O1—H1···N3ii0.86 (1)1.88 (2)2.7316 (19)172 (2)
C18—H18···O3i0.932.583.260 (2)130
C23—H23C···O3iii0.962.723.643 (3)162
C10—H10B···Cg1iv0.972.953.622 (2)127
C5—H5···Cg2v0.932.763.624 (2)156
C23—H23B···Cg3vi0.962.863.679 (2)144
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H16N2O2·C2H6OS
Mr394.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.892 (1), 9.1951 (10), 13.1515 (14)
α, β, γ (°)85.399 (2), 71.947 (2), 77.442 (2)
V3)997.81 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.36 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionAnalytical
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.618, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
8327, 3656, 2912
Rint0.046
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.00
No. of reflections3656
No. of parameters261
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C4–C9, C11–C16 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.848 (9)1.834 (10)2.6804 (19)176 (2)
O2—H2···S1i0.848 (9)2.842 (13)3.6209 (14)153.6 (18)
O1—H1···N3ii0.857 (9)1.880 (17)2.7316 (19)171.9 (18)
C18—H18···O3i0.932.583.260 (2)130
C23—H23C···O3iii0.962.723.643 (3)162
C10—H10B···Cg1iv0.972.953.622 (2)127
C5—H5···Cg2v0.932.763.624 (2)156
C23—H23B···Cg3vi0.962.863.679 (2)144
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z; (vi) x, y+1, z+1.
 

Acknowledgements

MQM (BSc), AAS (PhD) and RRM (postdoctoral agreement No. 290586 UNAM) would like to thank CONACYT for scholarships. DMM would like to acknowledge Dr Simón Hernández-Ortega for technical assistance. The financial support of this research by CONACYT (CB2010–154732) and DGAPA-UNAM (IN201711) is gratefully acknowledged. JMGA would like to thank the Departamento de Ciencias Básicas e Ingeniería de la UAM Campus Lerma for the generous financial support.

References

First citationAlper, S., Temiz Arpaci, O., Şener Aki, E. & Yalçin, I. (2003). Il Farmaco, 58, 497–507.  CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374–o1375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269–283.  Web of Science CrossRef CAS Google Scholar
First citationSharma, S., Sharma, P. K., Kumar, N. & Dudhe, R. (2011). Biomed. Pharmacother. 65, 244–251.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTellez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, v, 245–275.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds