organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(1H-1,2,4-Triazol-1-yl)phen­yl]-1H-benzimidazole

aCollege of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, People's Republic of China
*Correspondence e-mail: zhpzhp@263.net

(Received 27 July 2012; accepted 3 September 2012; online 8 September 2012)

In the title compound, C15H11N5, the benzimidazole ring system is nearly planar [maximum deviation = 0.039 (2) Å], and is oriented at a dihedral angle of 28.85 (10)° with respect to the benzene ring; the dihedral angle between the triazole and benzene rings is 17.30 (15)°. In the crystal N—H⋯N hydrogen bonds link the mol­ecules into chains. Weak C—H⋯N inter­actions are also present.

Related literature

For the crystal structures of Co(II) and Pt(II) complexes with benzimidazole ligands, see: Xia et al. (2012[Xia, D.-C., Ma, X.-Y., Ma, J.-X., Yao, J.-H., Yang, X.-Q. & Liu, Q.-Y. (2012). Z. Kristallogr. New Cryst. Struct. 227, 243-244.]); Qiu et al. (2011[Qiu, D.-F., Guo, Y.-C., Wang, H.-W., Bao, X.-Y., Feng, Y.-Q. & Huang, Q.-Z. (2011). Inorg. Chem. Commun. 14, 1520-1524.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N5

  • Mr = 261.29

  • Orthorhombic, P b c a

  • a = 8.323 (5) Å

  • b = 10.002 (5) Å

  • c = 30.068 (5) Å

  • V = 2503 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 16453 measured reflections

  • 2194 independent reflections

  • 1563 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.171

  • S = 1.15

  • 2194 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H19⋯N1i 0.86 2.06 2.877 (3) 159
C21—H21⋯N9ii 0.93 2.62 3.309 (5) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of the title compound, (I), are often used as coordinating ligands in the metal complexes (Xia et al., 2012; Qiu et al., 2011). Herewith we presenet the crystal structure of (I).

In (I) (Fig.1), the imidazole ring is twisted out of the plane of benzene ring at 17.3 (1)°, the benzimidazole and benzene rings form a dihedral angle of 28.8 (1)°. In the crystal structure, intermolecular N—H···N hydrogen bonds link the molecules into chains.

Related literature top

For the crystal structures of Co(II) and Pt(II) complexes with benzimidazole ligands, see: Xia et al. (2012); Qiu et al. (2011).

Experimental top

A mixture of 4-(1H-1, 2, 4-triazol-1-yl)benzaldehyde (0.86 g, 5.0 mmol) and o-phenylenediamine (0.54 g, 5.0 mmol) was refluxed in ethanol (20 ml) over night. The yellow compound that formed was filtered, washed several times with dichloromethane and dried in air. The compound was recrystallized from methanol to give light yellow crystals. Yield: 1.08 g (83%).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2 Ueq(N,C).

Structure description top

The derivatives of the title compound, (I), are often used as coordinating ligands in the metal complexes (Xia et al., 2012; Qiu et al., 2011). Herewith we presenet the crystal structure of (I).

In (I) (Fig.1), the imidazole ring is twisted out of the plane of benzene ring at 17.3 (1)°, the benzimidazole and benzene rings form a dihedral angle of 28.8 (1)°. In the crystal structure, intermolecular N—H···N hydrogen bonds link the molecules into chains.

For the crystal structures of Co(II) and Pt(II) complexes with benzimidazole ligands, see: Xia et al. (2012); Qiu et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title molecule(I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : The H-bond diagram of the title molecule(I).
2-[4-(1H-1,2,4-Triazol-1-yl)phenyl]-1H-benzimidazole top
Crystal data top
C15H11N5F(000) = 1088
Mr = 261.29Dx = 1.387 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 2017 reflections
a = 8.323 (5) Åθ = 2.7–21.7°
b = 10.002 (5) ŵ = 0.09 mm1
c = 30.068 (5) ÅT = 298 K
V = 2503 (2) Å3Block, yellow
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1563 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
phi and ω scansh = 99
16453 measured reflectionsk = 1111
2194 independent reflectionsl = 3534
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H11N5V = 2503 (2) Å3
Mr = 261.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.323 (5) ŵ = 0.09 mm1
b = 10.002 (5) ÅT = 298 K
c = 30.068 (5) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1563 reflections with I > 2σ(I)
16453 measured reflectionsRint = 0.053
2194 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.15Δρmax = 0.35 e Å3
2194 reflectionsΔρmin = 0.22 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1867 (2)0.31253 (16)0.15540 (6)0.0393 (5)
N20.2336 (2)0.09230 (16)0.15838 (6)0.0396 (5)
H190.27970.01630.15440.048*
C80.4410 (3)0.2305 (2)0.12203 (7)0.0381 (6)
C50.0618 (3)0.2523 (2)0.17899 (7)0.0375 (6)
C60.0911 (3)0.1146 (2)0.18041 (8)0.0359 (6)
C70.2869 (3)0.2113 (2)0.14441 (8)0.0381 (6)
C10.0105 (3)0.0285 (2)0.20314 (8)0.0441 (6)
H10.00800.06320.20370.053*
C110.7386 (3)0.2637 (2)0.08161 (8)0.0427 (6)
N80.9995 (3)0.1770 (2)0.05945 (9)0.0628 (7)
N30.8913 (3)0.2799 (2)0.06084 (7)0.0490 (6)
C120.6162 (3)0.3542 (2)0.07322 (9)0.0494 (7)
H120.63320.42540.05390.059*
C40.0694 (3)0.3067 (2)0.20085 (9)0.0483 (7)
H40.08930.39820.20020.058*
C100.7146 (3)0.1580 (2)0.11043 (9)0.0524 (7)
H100.79770.09890.11670.063*
C130.4691 (3)0.3382 (2)0.09374 (9)0.0468 (7)
H130.38770.40000.08860.056*
C90.5654 (3)0.1414 (2)0.12971 (9)0.0527 (7)
H90.54800.06860.14830.063*
C20.1397 (3)0.0843 (2)0.22475 (9)0.0504 (7)
H20.20920.02930.24060.060*
C210.9583 (4)0.3865 (3)0.04163 (10)0.0667 (9)
H210.90750.46890.03870.080*
N91.1047 (3)0.3612 (3)0.02737 (10)0.0760 (8)
C201.1220 (4)0.2326 (3)0.03917 (10)0.0677 (9)
H201.21590.18540.03330.081*
C30.1687 (3)0.2213 (3)0.22336 (9)0.0525 (7)
H30.25780.25560.23810.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0388 (12)0.0302 (10)0.0490 (12)0.0008 (8)0.0043 (9)0.0020 (8)
N20.0419 (12)0.0228 (9)0.0541 (13)0.0013 (8)0.0022 (10)0.0007 (8)
C80.0368 (13)0.0322 (12)0.0453 (14)0.0017 (10)0.0023 (11)0.0011 (10)
C50.0385 (13)0.0347 (12)0.0393 (13)0.0021 (10)0.0019 (11)0.0003 (10)
C60.0377 (13)0.0282 (11)0.0416 (13)0.0022 (9)0.0020 (11)0.0001 (9)
C70.0362 (14)0.0345 (12)0.0437 (14)0.0039 (10)0.0011 (11)0.0003 (10)
C10.0483 (15)0.0321 (12)0.0520 (15)0.0048 (11)0.0002 (12)0.0038 (11)
C110.0395 (14)0.0417 (13)0.0468 (15)0.0035 (11)0.0021 (12)0.0019 (11)
N80.0485 (15)0.0668 (15)0.0729 (17)0.0092 (12)0.0085 (13)0.0012 (12)
N30.0439 (13)0.0528 (13)0.0503 (13)0.0005 (10)0.0071 (10)0.0040 (10)
C120.0512 (16)0.0397 (13)0.0573 (17)0.0023 (11)0.0078 (13)0.0093 (11)
C40.0512 (16)0.0350 (13)0.0587 (17)0.0053 (11)0.0104 (13)0.0004 (11)
C100.0428 (16)0.0527 (16)0.0617 (18)0.0080 (11)0.0041 (13)0.0127 (13)
C130.0446 (15)0.0361 (13)0.0598 (17)0.0015 (10)0.0041 (13)0.0046 (11)
C90.0476 (16)0.0476 (15)0.0630 (18)0.0006 (12)0.0042 (13)0.0164 (13)
C20.0496 (16)0.0492 (15)0.0524 (16)0.0107 (12)0.0084 (13)0.0017 (12)
C210.0587 (19)0.0660 (18)0.075 (2)0.0033 (15)0.0197 (16)0.0149 (16)
N90.0561 (16)0.090 (2)0.0816 (19)0.0035 (14)0.0180 (15)0.0179 (15)
C200.0483 (18)0.094 (2)0.0610 (19)0.0058 (16)0.0080 (15)0.0023 (17)
C30.0483 (16)0.0508 (16)0.0585 (17)0.0027 (12)0.0148 (14)0.0039 (12)
Geometric parameters (Å, º) top
N1—C71.352 (3)N8—N31.368 (3)
N1—C51.395 (3)N3—C211.335 (3)
N2—C71.338 (3)C12—C131.381 (3)
N2—C61.377 (3)C12—H120.9300
N2—H190.8600C4—C31.368 (3)
C8—C91.386 (3)C4—H40.9300
C8—C131.392 (3)C10—C91.380 (4)
C8—C71.461 (3)C10—H100.9300
C5—C41.386 (3)C13—H130.9300
C5—C61.400 (3)C9—H90.9300
C6—C11.387 (3)C2—C31.392 (4)
C1—C21.374 (3)C2—H20.9300
C1—H10.9300C21—N91.316 (4)
C11—C101.382 (3)C21—H210.9300
C11—C121.386 (3)N9—C201.342 (4)
C11—N31.425 (3)C20—H200.9300
N8—C201.312 (4)C3—H30.9300
C7—N1—C5105.10 (18)C13—C12—H12120.2
C7—N2—C6107.00 (17)C11—C12—H12120.2
C7—N2—H19126.5C3—C4—C5117.8 (2)
C6—N2—H19126.5C3—C4—H4121.1
C9—C8—C13118.3 (2)C5—C4—H4121.1
C9—C8—C7119.7 (2)C9—C10—C11119.1 (2)
C13—C8—C7122.0 (2)C9—C10—H10120.5
C4—C5—N1131.2 (2)C11—C10—H10120.5
C4—C5—C6120.6 (2)C12—C13—C8120.8 (2)
N1—C5—C6108.1 (2)C12—C13—H13119.6
N2—C6—C1131.5 (2)C8—C13—H13119.6
N2—C6—C5107.15 (19)C10—C9—C8121.7 (2)
C1—C6—C5121.3 (2)C10—C9—H9119.2
N2—C7—N1112.7 (2)C8—C9—H9119.2
N2—C7—C8123.5 (2)C1—C2—C3121.4 (2)
N1—C7—C8123.73 (19)C1—C2—H2119.3
C2—C1—C6117.3 (2)C3—C2—H2119.3
C2—C1—H1121.4N9—C21—N3111.9 (3)
C6—C1—H1121.4N9—C21—H21124.0
C10—C11—C12120.5 (2)N3—C21—H21124.0
C10—C11—N3119.4 (2)C21—N9—C20101.4 (2)
C12—C11—N3120.1 (2)N8—C20—N9116.5 (3)
C20—N8—N3102.0 (2)N8—C20—H20121.8
C21—N3—N8108.2 (2)N9—C20—H20121.8
C21—N3—C11130.7 (2)C4—C3—C2121.7 (2)
N8—N3—C11121.0 (2)C4—C3—H3119.2
C13—C12—C11119.6 (2)C2—C3—H3119.2
C7—N1—C5—C4175.3 (3)C10—C11—N3—N817.1 (4)
C7—N1—C5—C61.2 (2)C12—C11—N3—N8163.6 (2)
C7—N2—C6—C1176.6 (3)C10—C11—C12—C130.2 (4)
C7—N2—C6—C50.1 (2)N3—C11—C12—C13179.6 (2)
C4—C5—C6—N2176.2 (2)N1—C5—C4—C3176.6 (2)
N1—C5—C6—N20.8 (2)C6—C5—C4—C30.5 (4)
C4—C5—C6—C10.8 (4)C12—C11—C10—C92.0 (4)
N1—C5—C6—C1177.7 (2)N3—C11—C10—C9178.7 (2)
C6—N2—C7—N10.7 (3)C11—C12—C13—C81.4 (4)
C6—N2—C7—C8175.9 (2)C9—C8—C13—C121.2 (4)
C5—N1—C7—N21.2 (3)C7—C8—C13—C12179.6 (2)
C5—N1—C7—C8175.4 (2)C11—C10—C9—C82.2 (4)
C9—C8—C7—N226.1 (3)C13—C8—C9—C100.6 (4)
C13—C8—C7—N2155.5 (2)C7—C8—C9—C10177.9 (2)
C9—C8—C7—N1150.1 (2)C6—C1—C2—C30.9 (4)
C13—C8—C7—N128.3 (3)N8—N3—C21—N90.1 (4)
N2—C6—C1—C2175.1 (2)C11—N3—C21—N9178.1 (3)
C5—C6—C1—C21.0 (4)N3—C21—N9—C200.0 (4)
C20—N8—N3—C210.2 (3)N3—N8—C20—N90.2 (4)
C20—N8—N3—C11178.4 (2)C21—N9—C20—N80.1 (4)
C10—C11—N3—C21160.7 (3)C5—C4—C3—C20.4 (4)
C12—C11—N3—C2118.7 (4)C1—C2—C3—C40.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H19···N1i0.862.062.877 (3)159
C21—H21···N9ii0.932.623.309 (5)132
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11N5
Mr261.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.323 (5), 10.002 (5), 30.068 (5)
V3)2503 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16453, 2194, 1563
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.171, 1.15
No. of reflections2194
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H19···N1i0.862.062.877 (3)159
C21—H21···N9ii0.932.623.309 (5)132
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+2, y+1, z.
 

Acknowledgements

This work was supported by a grant from the Anhui University Student Innovative Experiment Plan (KYXL20110033), the Program for New Century Excellent Talents in Universities of China, the Doctoral Program Foundation of the Ministry of Education of China (20113401110004), the 211 Project of Anhui University and the Natural Science Foundation of the Education Committee of Anhui Province, China (KJ2012A024).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQiu, D.-F., Guo, Y.-C., Wang, H.-W., Bao, X.-Y., Feng, Y.-Q. & Huang, Q.-Z. (2011). Inorg. Chem. Commun. 14, 1520–1524.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-C., Ma, X.-Y., Ma, J.-X., Yao, J.-H., Yang, X.-Q. & Liu, Q.-Y. (2012). Z. Kristallogr. New Cryst. Struct. 227, 243–244.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds