organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[(3-Iodo­phen­yl)imino­meth­yl]naphthalen-2-ol

aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey
*Correspondence e-mail: takbal@omu.edu.tr

(Received 3 August 2012; accepted 24 August 2012; online 29 September 2012)

In the title mol­ecule, C17H12INO, the dihedral angle between the naphthaldeyde plane and the 3-iodo­aniline plane is20.07 (13)°. It exists in the solid state as an enol–imine tautomer with a strong intra­molecular O—H⋯N hydrogen bond.

Related literature

For the applications of iodoaromatic compounds in synthetic organic chemistry, medicine and biochemistry, see; Merkushev (1988[Merkushev, E. B. (1988). Synthesis, pp. 923-925.]); Olah et al. (1993[Olah, G. A., Wang, Q. & Prakash, G. K. (1993). J. Org. Chem. 58, 3194-3195.]). Schiff base complexes have been used in catalytic reactions and are used as models for biological systems, see: Hamilton et al. (1987[Hamilton, D. E., Drago, R. S. & Zombeck, A. (1987). J. Am. Chem. Soc. 109, 374-379.]); Pyrz et al. (1985[Pyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Jr (1985). J. Am. Chem. Soc. 107, 614-620.]); Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R., Alvarado, R. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.]). For related structures, see: Ünver et al. (2000[Ünver, H., Zengin, D. M. & Güven, K. (2000). J. Chem. Crystallogr. 30, 359-364.]); Manvizhi et al. (2011[Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12INO

  • Mr = 373.18

  • Monoclinic, C 2/c

  • a = 32.059 (3) Å

  • b = 4.8392 (3) Å

  • c = 19.2682 (16) Å

  • β = 107.269 (6)°

  • V = 2854.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 296 K

  • 0.80 × 0.30 × 0.03 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.793, Tmax = 0.925

  • 9569 measured reflections

  • 2781 independent reflections

  • 1607 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.094

  • S = 0.93

  • 2781 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.82 2.555 (6) 148

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Iodoaromatic compounds are valuable and versatile synthetic intermediates in many domains of synthetic organic chemistry, medicine and biochemistry (Merkushev et al., 1988; Olah et al., 1993). The Schiff base complexes have also been used in catalytic reactions (Hamilton et al., 1987) are used as models for biological systems (Pyrz et al., 1985; Costamagna et al., 1992). There are two types of intramolecular hydrogen bonds in Schiff bases, namely keto-amine (N—H···O) and enol-imine (N···H—O) tautomeric forms. The present X-ray investigation shows that the title compound,(I), prefers the enol-imine tautomeric form rather than the keto-amine tautomeric form. The C9—O1 and C7—N1 bond lengths verify the enol-imine tautomeric form. these distances agree with the literature[1.310 (8) and 1.319 (6)Â; Ünver et al. 2000], which also show the enol-imine tautomeric form. The C1—I1 bond lenght in (I) is also in a good agremeent with the corresponding distances in the literature [2.092 (4)Â; Manvizhi et al., 2011]. The bond distances for O1-H1O1 and N1-H1O1 are 0.82 and 1.82 Â, respectively, and the N1···H1—O1 angle is 148 Å. These distances and angle agree with the literature[Ünver et al. 2000], The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond. An ORTEP-3 (Farrugia, 1997) packing diagram of (I), viewed along the b axis. The molecule is non-planar. The angle between the two Schiff base moieties [C1—C6,N1,I1] and [C7—C13,O1,N1] is 20.07 (13) Å. Cg(1), Cg(2) and Cg(3) are the centroids of rings C1—C6, C8—C13 and C12—C17, respectively. However, π···π interactions between the centroids of the Cg(1) and Cg(2) rings (distance between ring centroids = 4.664 (3) Â), and the Cg(2) and Cg(3) rings (distance between ring centroids = 4.791 (3)Â), stack the molecules along the b-axis.

Related literature top

Iodoaromatic compounds are valuable and versatile synthetic intermediates in many domains of synthetic organic chemistry, medicine and biochemistry, see; Merkushev (1988); Olah et al. (1993). Schiff base complexes have been used in catalytic reactions and are used as models for biological systems, see: Hamilton et al. (1987); Pyrz et al. (1985); Costamagna et al. (1992). For related structures, see: Ünver et al. (2000); Manvizhi et al. (2011).

Experimental top

The compound E)—1-((3-iodophenyllimino)methyl)naphthalen-2-ol (E)-1-((3-bromophenyllimino)methyl)naphthalen-2-ol was prepared by refluxing a mixture of a solution containing 2-hydroxy-1-naphthaldehyde (17.2 mg 0.100 mmol) in 30 ml absolute ethanol and a solution containing 3-iodoaniline (21.9 mg 0.100 mmol) in 20 ml absolute ethanol. The reaction mixture was stirred for 4 h under reflux. Single crystals of the title compound for X-ray anaysis were obtaned by slow evaporation of an ethaol solition (yield % 67; m.p 410–412 oK).

Refinement top

All carbon attached H-atoms were refined using riding model for hydrogen bonds with d(C—H) = 0.93 Å (Uiso=1.2Ueq of the parent atom) for aromatic carbon atoms and d(C—H) = 0.96 Å (Uiso=1.5Ueq of the parent atom) for methyl carbon atoms.

Structure description top

Iodoaromatic compounds are valuable and versatile synthetic intermediates in many domains of synthetic organic chemistry, medicine and biochemistry (Merkushev et al., 1988; Olah et al., 1993). The Schiff base complexes have also been used in catalytic reactions (Hamilton et al., 1987) are used as models for biological systems (Pyrz et al., 1985; Costamagna et al., 1992). There are two types of intramolecular hydrogen bonds in Schiff bases, namely keto-amine (N—H···O) and enol-imine (N···H—O) tautomeric forms. The present X-ray investigation shows that the title compound,(I), prefers the enol-imine tautomeric form rather than the keto-amine tautomeric form. The C9—O1 and C7—N1 bond lengths verify the enol-imine tautomeric form. these distances agree with the literature[1.310 (8) and 1.319 (6)Â; Ünver et al. 2000], which also show the enol-imine tautomeric form. The C1—I1 bond lenght in (I) is also in a good agremeent with the corresponding distances in the literature [2.092 (4)Â; Manvizhi et al., 2011]. The bond distances for O1-H1O1 and N1-H1O1 are 0.82 and 1.82 Â, respectively, and the N1···H1—O1 angle is 148 Å. These distances and angle agree with the literature[Ünver et al. 2000], The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond. An ORTEP-3 (Farrugia, 1997) packing diagram of (I), viewed along the b axis. The molecule is non-planar. The angle between the two Schiff base moieties [C1—C6,N1,I1] and [C7—C13,O1,N1] is 20.07 (13) Å. Cg(1), Cg(2) and Cg(3) are the centroids of rings C1—C6, C8—C13 and C12—C17, respectively. However, π···π interactions between the centroids of the Cg(1) and Cg(2) rings (distance between ring centroids = 4.664 (3) Â), and the Cg(2) and Cg(3) rings (distance between ring centroids = 4.791 (3)Â), stack the molecules along the b-axis.

Iodoaromatic compounds are valuable and versatile synthetic intermediates in many domains of synthetic organic chemistry, medicine and biochemistry, see; Merkushev (1988); Olah et al. (1993). Schiff base complexes have been used in catalytic reactions and are used as models for biological systems, see: Hamilton et al. (1987); Pyrz et al. (1985); Costamagna et al. (1992). For related structures, see: Ünver et al. (2000); Manvizhi et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. An ORTEP-3 (Farrugia, 1997) packing diagram of (I), viewed along the b axis.
(E)-1-[(3-Iodophenyl)iminomethyl]naphthalen-2-ol top
Crystal data top
C17H12INOF(000) = 1456
Mr = 373.18Dx = 1.737 Mg m3
Monoclinic, C2/cMelting point = 410–412 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 32.059 (3) ÅCell parameters from 9569 reflections
b = 4.8392 (3) Åθ = 1.3–26.0°
c = 19.2682 (16) ŵ = 2.24 mm1
β = 107.269 (6)°T = 296 K
V = 2854.5 (4) Å3Needle, yellow
Z = 80.80 × 0.30 × 0.03 mm
Data collection top
Stoe IPDS 2
diffractometer
2781 independent reflections
Radiation source: fine-focus sealed tube1607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
w–scan rotationθmax = 26.0°, θmin = 1.3°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 3838
Tmin = 0.793, Tmax = 0.925k = 55
9569 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
2781 reflectionsΔρmax = 0.87 e Å3
181 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
C17H12INOV = 2854.5 (4) Å3
Mr = 373.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.059 (3) ŵ = 2.24 mm1
b = 4.8392 (3) ÅT = 296 K
c = 19.2682 (16) Å0.80 × 0.30 × 0.03 mm
β = 107.269 (6)°
Data collection top
Stoe IPDS 2
diffractometer
2781 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1607 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.925Rint = 0.056
9569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.93Δρmax = 0.87 e Å3
2781 reflectionsΔρmin = 0.57 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.052729 (12)0.52255 (9)0.33319 (2)0.08465 (19)
C50.16216 (15)0.0503 (9)0.4653 (2)0.0490 (11)
C80.15014 (14)0.4836 (10)0.5955 (2)0.0498 (11)
O10.22667 (12)0.3804 (8)0.6294 (2)0.0784 (11)
H10.21770.27660.59460.118*
C90.19336 (16)0.5200 (11)0.6398 (3)0.0593 (13)
C110.1710 (2)0.8587 (12)0.7108 (3)0.0712 (16)
H110.17810.98380.74910.085*
N10.17155 (13)0.1458 (9)0.5220 (2)0.0546 (10)
C40.19651 (17)0.1402 (12)0.4410 (3)0.0620 (13)
H40.22430.06720.46160.074*
C60.12123 (16)0.1594 (10)0.4331 (2)0.0514 (12)
H60.09760.10100.44810.062*
C70.14134 (16)0.2876 (10)0.5375 (2)0.0508 (12)
H70.11250.26070.50960.061*
C30.19005 (19)0.3351 (13)0.3873 (3)0.0721 (16)
H30.21350.39350.37200.087*
C20.14946 (18)0.4450 (11)0.3557 (3)0.0655 (14)
H20.14510.57790.31940.079*
C10.11518 (16)0.3532 (11)0.3793 (2)0.0544 (12)
C130.11570 (16)0.6479 (10)0.6093 (2)0.0510 (12)
C170.0936 (2)0.9958 (12)0.6815 (3)0.0797 (16)
H170.10071.11920.72030.096*
C140.07180 (17)0.6311 (12)0.5668 (3)0.0651 (14)
H140.06380.50920.52770.078*
C160.0511 (2)0.9750 (14)0.6391 (4)0.0868 (18)
H160.02961.08360.64880.104*
C100.20262 (19)0.7080 (12)0.6980 (3)0.0693 (15)
H100.23120.72730.72790.083*
C120.1268 (2)0.8351 (11)0.6679 (3)0.0613 (14)
C150.0407 (2)0.7938 (14)0.5825 (4)0.0810 (17)
H150.01180.77990.55380.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0709 (2)0.0937 (3)0.0771 (3)0.0026 (2)0.00310 (19)0.0215 (2)
C50.053 (3)0.047 (3)0.047 (3)0.006 (2)0.014 (2)0.009 (2)
C80.058 (3)0.048 (3)0.045 (2)0.007 (2)0.017 (2)0.005 (2)
O10.054 (2)0.094 (3)0.079 (3)0.005 (2)0.007 (2)0.005 (2)
C90.058 (3)0.060 (3)0.058 (3)0.010 (3)0.015 (2)0.010 (3)
C110.104 (5)0.060 (4)0.045 (3)0.021 (3)0.014 (3)0.006 (3)
N10.053 (2)0.055 (3)0.056 (2)0.001 (2)0.016 (2)0.005 (2)
C40.053 (3)0.067 (4)0.067 (3)0.011 (3)0.019 (3)0.009 (3)
C60.054 (3)0.056 (3)0.045 (3)0.010 (2)0.015 (2)0.005 (2)
C70.050 (3)0.053 (3)0.046 (3)0.004 (2)0.010 (2)0.007 (2)
C30.069 (4)0.085 (4)0.070 (4)0.027 (3)0.032 (3)0.004 (3)
C20.073 (3)0.073 (4)0.051 (3)0.012 (3)0.018 (3)0.004 (3)
C10.058 (3)0.060 (3)0.043 (3)0.009 (2)0.011 (2)0.007 (2)
C130.060 (3)0.045 (3)0.052 (3)0.005 (2)0.022 (2)0.007 (2)
C170.114 (5)0.059 (4)0.080 (4)0.007 (4)0.049 (4)0.005 (3)
C140.059 (3)0.068 (4)0.070 (3)0.002 (3)0.022 (3)0.001 (3)
C160.099 (5)0.073 (4)0.107 (5)0.017 (4)0.059 (4)0.005 (4)
C100.067 (4)0.071 (4)0.060 (3)0.014 (3)0.004 (3)0.001 (3)
C120.090 (4)0.048 (3)0.053 (3)0.008 (3)0.032 (3)0.001 (2)
C150.069 (4)0.082 (5)0.097 (5)0.006 (3)0.032 (4)0.013 (4)
Geometric parameters (Å, º) top
I1—C12.101 (5)C6—H60.9300
C5—C61.379 (6)C7—H70.9300
C5—C41.387 (6)C3—C21.370 (7)
C5—N11.411 (6)C3—H30.9300
C8—C91.406 (6)C2—C11.381 (7)
C8—C71.428 (6)C2—H20.9300
C8—C131.448 (7)C13—C141.406 (7)
O1—C91.328 (6)C13—C121.408 (7)
O1—H10.8200C17—C161.368 (9)
C9—C101.405 (7)C17—C121.404 (8)
C11—C101.331 (8)C17—H170.9300
C11—C121.416 (7)C14—C151.373 (8)
C11—H110.9300C14—H140.9300
N1—C71.292 (6)C16—C151.361 (9)
C4—C31.370 (8)C16—H160.9300
C4—H40.9300C10—H100.9300
C6—C11.369 (7)C15—H150.9300
C6—C5—C4118.3 (5)C3—C2—H2120.9
C6—C5—N1124.1 (4)C1—C2—H2120.9
C4—C5—N1117.6 (4)C6—C1—C2121.4 (5)
C9—C8—C7119.3 (4)C6—C1—I1119.4 (4)
C9—C8—C13119.1 (4)C2—C1—I1119.2 (4)
C7—C8—C13121.6 (4)C14—C13—C12118.4 (5)
C9—O1—H1109.5C14—C13—C8123.1 (4)
O1—C9—C10117.4 (5)C12—C13—C8118.4 (5)
O1—C9—C8122.4 (5)C16—C17—C12121.5 (6)
C10—C9—C8120.2 (5)C16—C17—H17119.2
C10—C11—C12122.2 (5)C12—C17—H17119.2
C10—C11—H11118.9C15—C14—C13120.3 (5)
C12—C11—H11118.9C15—C14—H14119.9
C7—N1—C5122.3 (4)C13—C14—H14119.9
C3—C4—C5120.9 (5)C15—C16—C17119.3 (6)
C3—C4—H4119.6C15—C16—H16120.4
C5—C4—H4119.6C17—C16—H16120.4
C1—C6—C5120.3 (4)C11—C10—C9120.7 (5)
C1—C6—H6119.8C11—C10—H10119.7
C5—C6—H6119.8C9—C10—H10119.7
N1—C7—C8123.1 (4)C17—C12—C13118.8 (6)
N1—C7—H7118.5C17—C12—C11121.9 (5)
C8—C7—H7118.5C13—C12—C11119.4 (5)
C2—C3—C4120.9 (5)C16—C15—C14121.7 (6)
C2—C3—H3119.6C16—C15—H15119.1
C4—C3—H3119.6C14—C15—H15119.1
C3—C2—C1118.3 (5)
C7—C8—C9—O10.8 (7)C7—C8—C13—C141.2 (7)
C13—C8—C9—O1178.7 (4)C9—C8—C13—C121.1 (6)
C7—C8—C9—C10178.8 (4)C7—C8—C13—C12179.4 (4)
C13—C8—C9—C101.7 (7)C12—C13—C14—C150.2 (8)
C6—C5—N1—C716.5 (7)C8—C13—C14—C15179.6 (5)
C4—C5—N1—C7164.2 (4)C12—C17—C16—C150.2 (9)
C6—C5—C4—C30.9 (7)C12—C11—C10—C91.1 (9)
N1—C5—C4—C3178.5 (4)O1—C9—C10—C11178.7 (5)
C4—C5—C6—C10.6 (7)C8—C9—C10—C111.7 (8)
N1—C5—C6—C1178.7 (4)C16—C17—C12—C130.3 (8)
C5—N1—C7—C8179.0 (4)C16—C17—C12—C11178.9 (5)
C9—C8—C7—N12.2 (7)C14—C13—C12—C170.3 (7)
C13—C8—C7—N1177.2 (4)C8—C13—C12—C17179.8 (4)
C5—C4—C3—C20.4 (8)C14—C13—C12—C11179.0 (5)
C4—C3—C2—C10.3 (8)C8—C13—C12—C110.5 (7)
C5—C6—C1—C20.1 (7)C10—C11—C12—C17179.7 (5)
C5—C6—C1—I1178.5 (3)C10—C11—C12—C130.5 (8)
C3—C2—C1—C60.6 (8)C17—C16—C15—C140.1 (9)
C3—C2—C1—I1179.0 (4)C13—C14—C15—C160.1 (9)
C9—C8—C13—C14178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.555 (6)148

Experimental details

Crystal data
Chemical formulaC17H12INO
Mr373.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)32.059 (3), 4.8392 (3), 19.2682 (16)
β (°) 107.269 (6)
V3)2854.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.80 × 0.30 × 0.03
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.793, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
9569, 2781, 1607
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.094, 0.93
No. of reflections2781
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.57

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.555 (6)148
 

Acknowledgements

The authors thank the Ondokuz Mayis University Research Fund for financial support of this project.

References

First citationCostamagna, J., Vargas, J., Latorre, R., Alvarado, R. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHamilton, D. E., Drago, R. S. & Zombeck, A. (1987). J. Am. Chem. Soc. 109, 374–379.  CrossRef CAS Web of Science Google Scholar
First citationManvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMerkushev, E. B. (1988). Synthesis, pp. 923–925.  CrossRef Web of Science Google Scholar
First citationOlah, G. A., Wang, Q. & Prakash, G. K. (1993). J. Org. Chem. 58, 3194–3195.  CrossRef CAS Web of Science Google Scholar
First citationPyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Jr (1985). J. Am. Chem. Soc. 107, 614–620.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationÜnver, H., Zengin, D. M. & Güven, K. (2000). J. Chem. Crystallogr. 30, 359–364.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds