supplementary materials


aa2070 scheme

Acta Cryst. (2012). E68, m1422    [ doi:10.1107/S1600536812044157 ]

Poly[[aquabis[[mu]2-6-(pyridine-3-carboxamido)naphthalene-2-carboxylato]copper(II)] dihydrate]

Y.-S. Song and S. W. Lee

Abstract top

The title compound, {[Cu(C17H11N2O3)2(H2O)]·2H2O}n, is a two-dimensional polymer. The Cu2+ ion lies on the crystallographic twofold axis. The coordination sphere of the Cu2+ ion can be described as a distorted square pyramid. All of the H atoms in the amide group and lattice water molecules participate in O-H...O or N-H...O hydrogen bonding to strengthen the two-dimensioal framework of the polymer.

Comment top

Coordination polymers are prepared by employing a wide variety of linking ligands possessing pyridyl–pyridyl, pyridyl–amine, furan–furan, thiophene–thiophene, or pyridyl–carboxylate terminals. For instance, bis(pyridyl)- and dicarboxylate-type linking ligands have long been utilized in preparing such polymers (Robin & Fromm, 2006). In particular, those containing the pyridyl–carboxylate terminals are intriguing due to the presence of both a harder carboxylate oxygen donor and a softer pyridyl nitrogen donor in them. The ligands of this type were employed to prepare unique polymers containing both d- and f-block metals within their frameworks (Hu et al., 2012; Chen et al., 2010; Tang et al., 2010; Yue et al., 2011; Zhu et al., 2010). 6-(Nicotinamido)-2-naphthoic acid (HL) belongs to the pyridyl–carboxylate-type linking ligands, and we recently reported its preparation and structure (Song & Lee, 2012). Our research group also reported the molecular structures of two other related linking ligands (Han & Lee, 2012; Zheng & Lee, 2012). We report herein the structure of a two-dimensional Cu polymer of the HL ligand, which is the first d-block coordination polymer of this ligand.

Fig. 1 shows an asymmetric unit of the title polymer, which consists of one half Cu2+ ion, one 6-(nicotinamido)-2-naphthoato ligand (L), one half aqua ligand, and one lattice water molecule. The Cu1 and O4 atoms lie on the crystallographic twofold axis, and the remaining atoms occupy general positions. The Cu2+ ion is coordinated to two oxygen atoms from two ligands and two nitrogen atoms from another two ligands to form a distorted square plane. The Cu1···O4 length (2.490 (3) Å), which is represented by a dotted line in Fig. 1, is extremely long, considering the covalent radii of Cu (1.28 Å) and O (0.66 Å) atoms. The van der Waals radii of Cu and O atoms are 1.40 and 1.52 Å, respectively, and therefore the Cu1···O4 bond may be best described as a strong van der Waals contact. Consequently, the coordination sphere of the Cu2+ ion may be thought of as square pyramidal, if the Cu1···O4 van der Waals contact is included. The molecular plane, defined by the two O and two N atoms, is extremely distorted from the planarity with the average atomic displacement of 0.328 (1) Å. Two carboxylate oxygen atoms act differently; one (O1) is coordinated to the Cu2+ ion and the other (O2) acts as a H-bond acceptor. The terminal carboxylate and pyridyl groups are bonded to the Cu2+ ions, indicating that this ligand behaves as a linking ligand. The amide group (–CONH–) does not coordinate to the metal ion, and the carbonyl oxygen (O3) acts as a H-bond acceptor and the N–H bond behaves as a H-bond donor. In fact, all of the hydrogen atoms in the amide group and lattice water molecule participate in the hydrogen bonds of the O–H···O or N–H···O types (Table 1). Fig. 2 shows a projection of the title polymer along the c-axis. The repeat unit consists of four ligands and four Cu2+ ions. This unit contains 56 atoms (4 Cu2+ ions and 52 ligand atoms) with the Cu2+···Cu2+ separation of 15.2045 (4) Å. The repeat units are connected by the ligands to form a 2-D layer in the [110] direction.

Related literature top

For coordination polymers based on linking ligands with O- and N-donor atoms, see: Robin & Fromm (2006). For df coordination polymers based on linking ligands with pyridyl–carboxylate terminal ligands, see: Hu et al. (2012); Chen et al. (2010); Tang et al. (2010); Yue et al. (2011); Zhu et al. (2010). For related potential linking ligands, see: Han & Lee (2012); Zheng & Lee (2012). For the ligand used for the preparation of the title compound, see: Song & Lee (2012).

Experimental top

A mixture of Cu(NO3)2.3H2O (48.3 mg, 0.2 mmol) and 6-(nicotinamido)-2-naphthoic acid (58.4 mg, 0.2 mmol) in H2O (20 ml) was sealed in a 24 ml Teflon-lined vessel. The reaction mixture was heated 150 °C for 72 h and then slowly air-cooled to room temperature for 24 h. The resulting green crystals were isolated by filtration, washed by methanol (10 ml × 3), and then air-dried to give the title compound (19 mg, 0.027 mmol, 27% yield). mp: 586–589 K. IR (KBr, cm-1): 3474 (w), 2897 (w), 2633 (w), 2383 (w), 2298 (w), 2084 (w), 1805 (w), 1660 (m), 1580 (m), 1483 (m), 1353 (m), 1204 (w), 1108 (w), 1049 (w), 951 (w), 886 (w), 824 (w), 772 (w), 749 (w), 702 (w), 625 (w), 457 (w).

Refinement top

C-bound H atoms were positioned geometrically [C—H = 0.93 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). H-atoms participating in the H-bonds were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. An asymmetric unit of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing a 2-D layer in the [110] direction. Dotted lines represent hydrogen bonds.
Poly[[aquabis[µ2-6-(pyridine-3-carboxamido)naphthalene-2- carboxylato]copper(II)] dihydrate] top
Crystal data top
[Cu(C17H11N2O3)2(H2O)]·2H2OF(000) = 1444
Mr = 700.14Dx = 1.549 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3663 reflections
a = 29.6255 (8) Åθ = 2.8–26.3°
b = 6.8582 (2) ŵ = 0.79 mm1
c = 14.8264 (4) ÅT = 296 K
β = 94.728 (3)°Block, green
V = 3002.14 (14) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3705 independent reflections
Radiation source: sealed tube2462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3839
Tmin = 0.870, Tmax = 0.884k = 98
24367 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0323P)2 + 3.3539P]
where P = (Fo2 + 2Fc2)/3
3705 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C17H11N2O3)2(H2O)]·2H2OV = 3002.14 (14) Å3
Mr = 700.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.6255 (8) ŵ = 0.79 mm1
b = 6.8582 (2) ÅT = 296 K
c = 14.8264 (4) Å0.18 × 0.16 × 0.16 mm
β = 94.728 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2462 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.884Rint = 0.071
24367 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Δρmax = 0.31 e Å3
S = 1.00Δρmin = 0.28 e Å3
3705 reflectionsAbsolute structure: ?
234 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.15958 (7)0.75000.02730 (14)
O10.43940 (5)0.1123 (3)0.69567 (11)0.0339 (5)
O20.43602 (6)0.1766 (3)0.76371 (12)0.0404 (5)
O30.14263 (6)0.0207 (3)0.50325 (12)0.0388 (5)
O40.50000.5226 (5)0.75000.0458 (8)
O50.11363 (10)0.3690 (4)0.58013 (19)0.0586 (7)
N10.15983 (7)0.2657 (4)0.57653 (15)0.0298 (5)
N20.02186 (6)0.2919 (3)0.62447 (13)0.0248 (5)
C10.41869 (8)0.0433 (4)0.71535 (16)0.0286 (6)
C20.36998 (8)0.0565 (4)0.67842 (16)0.0278 (6)
C30.34545 (8)0.2230 (4)0.69110 (17)0.0315 (6)
H30.35970.32880.72070.038*
C40.29901 (8)0.2372 (4)0.66017 (16)0.0277 (6)
C50.27238 (8)0.4042 (4)0.67428 (18)0.0348 (7)
H50.28570.51200.70370.042*
C60.22799 (8)0.4089 (4)0.64557 (17)0.0337 (6)
H60.21110.52010.65550.040*
C70.20668 (8)0.2475 (4)0.60056 (16)0.0274 (6)
C80.23130 (8)0.0832 (4)0.58502 (16)0.0286 (6)
H80.21740.02250.55500.034*
C90.27774 (8)0.0746 (4)0.61459 (16)0.0269 (6)
C100.30397 (8)0.0933 (4)0.60178 (18)0.0337 (7)
H100.29060.20010.57160.040*
C110.34869 (8)0.1023 (4)0.63273 (17)0.0336 (7)
H110.36520.21480.62340.040*
C120.13114 (8)0.1337 (4)0.53628 (16)0.0268 (6)
C130.08218 (8)0.1870 (4)0.53737 (16)0.0247 (5)
C140.05252 (8)0.1765 (4)0.45994 (16)0.0295 (6)
H140.06240.13410.40530.035*
C150.00809 (9)0.2305 (4)0.46597 (17)0.0329 (7)
H150.01230.22950.41470.040*
C160.00604 (8)0.2859 (4)0.54859 (16)0.0292 (6)
H160.03620.32070.55180.035*
C170.06539 (8)0.2429 (4)0.61731 (16)0.0262 (6)
H170.08520.24710.66920.031*
H10.1478 (10)0.368 (5)0.588 (2)0.055 (11)*
H40.4757 (10)0.599 (6)0.754 (3)0.083 (13)*
H510.1036 (13)0.338 (6)0.623 (2)0.072 (14)*
H520.1223 (14)0.273 (7)0.561 (3)0.088 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0144 (2)0.0424 (3)0.0249 (2)0.0000.00091 (16)0.000
O10.0186 (8)0.0527 (14)0.0301 (9)0.0109 (9)0.0001 (7)0.0015 (9)
O20.0268 (9)0.0467 (14)0.0464 (11)0.0048 (10)0.0051 (8)0.0007 (10)
O30.0274 (10)0.0329 (12)0.0565 (12)0.0030 (9)0.0062 (9)0.0119 (10)
O40.052 (2)0.032 (2)0.0547 (19)0.0000.0111 (16)0.000
O50.0766 (18)0.0398 (17)0.0638 (17)0.0107 (13)0.0319 (14)0.0065 (13)
N10.0185 (11)0.0281 (14)0.0426 (13)0.0052 (11)0.0013 (9)0.0033 (11)
N20.0186 (10)0.0288 (14)0.0269 (10)0.0003 (9)0.0015 (8)0.0006 (9)
C10.0190 (12)0.0431 (19)0.0237 (12)0.0003 (13)0.0028 (10)0.0078 (12)
C20.0188 (12)0.0366 (17)0.0281 (13)0.0046 (12)0.0028 (10)0.0042 (12)
C30.0233 (13)0.0352 (18)0.0356 (14)0.0019 (12)0.0003 (11)0.0004 (12)
C40.0219 (12)0.0310 (16)0.0299 (13)0.0020 (12)0.0001 (10)0.0020 (11)
C50.0260 (14)0.0308 (17)0.0467 (16)0.0020 (12)0.0024 (12)0.0081 (13)
C60.0278 (14)0.0278 (16)0.0450 (15)0.0059 (12)0.0003 (12)0.0078 (13)
C70.0177 (12)0.0326 (16)0.0317 (13)0.0017 (12)0.0021 (10)0.0005 (12)
C80.0220 (12)0.0290 (16)0.0343 (13)0.0011 (12)0.0003 (10)0.0041 (12)
C90.0228 (12)0.0299 (16)0.0278 (12)0.0038 (11)0.0012 (10)0.0008 (11)
C100.0256 (13)0.0307 (17)0.0437 (15)0.0045 (12)0.0031 (11)0.0074 (12)
C110.0256 (13)0.0376 (19)0.0372 (14)0.0094 (12)0.0001 (11)0.0040 (12)
C120.0205 (12)0.0313 (17)0.0289 (12)0.0009 (12)0.0040 (10)0.0020 (12)
C130.0204 (12)0.0205 (15)0.0332 (13)0.0012 (11)0.0031 (10)0.0024 (11)
C140.0276 (13)0.0322 (17)0.0286 (12)0.0012 (13)0.0024 (10)0.0016 (12)
C150.0281 (14)0.0411 (18)0.0281 (13)0.0006 (12)0.0061 (11)0.0007 (12)
C160.0188 (12)0.0349 (18)0.0336 (13)0.0014 (11)0.0003 (10)0.0013 (11)
C170.0187 (12)0.0330 (16)0.0265 (12)0.0013 (11)0.0007 (10)0.0003 (11)
Geometric parameters (Å, º) top
Cu1—O11.9337 (16)C4—C91.424 (4)
Cu1—O1i1.9337 (16)C5—C61.349 (3)
Cu1—N2ii2.0476 (19)C5—H50.9300
Cu1—N2iii2.0476 (19)C6—C71.414 (4)
O1—C11.277 (3)C6—H60.9300
O2—C11.246 (3)C7—C81.372 (4)
O3—C121.227 (3)C8—C91.410 (3)
O4—H40.90 (3)C8—H80.9300
O5—H510.75 (4)C9—C101.410 (4)
O5—H520.77 (4)C10—C111.367 (3)
N1—C121.347 (3)C10—H100.9300
N1—C71.410 (3)C11—H110.9300
N1—H10.81 (3)C12—C131.497 (3)
N2—C161.341 (3)C13—C171.377 (3)
N2—C171.345 (3)C13—C141.389 (3)
N2—Cu1iv2.0476 (19)C14—C151.377 (3)
C1—C21.503 (3)C14—H140.9300
C2—C31.374 (4)C15—C161.380 (3)
C2—C111.405 (4)C15—H150.9300
C3—C41.417 (3)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.416 (4)
O1—Cu1—O1i160.69 (12)C8—C7—C6120.0 (2)
O1—Cu1—N2ii93.07 (7)N1—C7—C6116.2 (2)
O1i—Cu1—N2ii90.06 (7)C7—C8—C9120.1 (2)
O1—Cu1—N2iii90.06 (7)C7—C8—H8120.0
O1i—Cu1—N2iii93.07 (7)C9—C8—H8120.0
N2ii—Cu1—N2iii161.31 (12)C8—C9—C10121.8 (2)
C1—O1—Cu1119.48 (17)C8—C9—C4119.8 (2)
H51—O5—H52104 (4)C10—C9—C4118.4 (2)
C12—N1—C7128.7 (2)C11—C10—C9121.4 (3)
C12—N1—H1114 (2)C11—C10—H10119.3
C7—N1—H1118 (2)C9—C10—H10119.3
C16—N2—C17117.1 (2)C10—C11—C2120.7 (3)
C16—N2—Cu1iv123.25 (15)C10—C11—H11119.6
C17—N2—Cu1iv119.30 (15)C2—C11—H11119.6
O2—C1—O1124.2 (2)O3—C12—N1124.8 (2)
O2—C1—C2120.2 (2)O3—C12—C13121.1 (2)
O1—C1—C2115.6 (2)N1—C12—C13114.1 (2)
C3—C2—C11119.3 (2)C17—C13—C14118.5 (2)
C3—C2—C1120.2 (2)C17—C13—C12119.8 (2)
C11—C2—C1120.5 (2)C14—C13—C12121.7 (2)
C2—C3—C4121.5 (3)C15—C14—C13118.4 (2)
C2—C3—H3119.2C15—C14—H14120.8
C4—C3—H3119.2C13—C14—H14120.8
C5—C4—C3123.1 (2)C14—C15—C16119.5 (2)
C5—C4—C9118.3 (2)C14—C15—H15120.2
C3—C4—C9118.7 (2)C16—C15—H15120.2
C6—C5—C4120.9 (3)N2—C16—C15122.8 (2)
C6—C5—H5119.6N2—C16—H16118.6
C4—C5—H5119.6C15—C16—H16118.6
C5—C6—C7121.0 (3)N2—C17—C13123.6 (2)
C5—C6—H6119.5N2—C17—H17118.2
C7—C6—H6119.5C13—C17—H17118.2
C8—C7—N1123.8 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5v0.81 (3)2.07 (3)2.857 (4)164 (3)
O5—H51···O2ii0.75 (4)2.13 (4)2.861 (3)164 (4)
O5—H52···O30.77 (4)2.04 (4)2.811 (4)177 (5)
O4—H4···O2vi0.90 (3)1.95 (3)2.820 (3)163 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (v) x, y1, z; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.81 (3)2.07 (3)2.857 (4)164 (3)
O5—H51···O2ii0.75 (4)2.13 (4)2.861 (3)164 (4)
O5—H52···O30.77 (4)2.04 (4)2.811 (4)177 (5)
O4—H4···O2iii0.90 (3)1.95 (3)2.820 (3)163 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z.
Acknowledgements top

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1A2000876).

references
References top

Bruker (2008). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 14, 3267–3276.

Han, S. H. & Lee, S. W. (2012). Acta Cryst. E68, o294.

Hu, S., Sheng, T., Wen, Y., Fu, R. & Wu, X. (2012). Inorg. Chem. Commun. 16, 28–32.

Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Song, Y.-S. & Lee, S. W. (2012). Acta Cryst. E68, o1978.

Tang, Y. Z., Wen, H. R., Cao, Z., Wang, X. W., Huang, S. & Yu, C. L. (2010). Inorg. Chem. Commun. 13, 924–928.

Yue, S. T., Wei, Z. Q., Wang, N., Liu, W. J., Zhao, X., Chang, L. M., Liu, Y. L., Mo, H. H. & Cai, Y. P. (2011). Inorg. Chem. Commun. 14, 1396–1399.

Zheng, Z. N. & Lee, S. W. (2012). Acta Cryst. E68, o774.

Zhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299–1303.