supplementary materials


bg2476 scheme

Acta Cryst. (2012). E68, o3104-o3105    [ doi:10.1107/S1600536812042018 ]

2-Cyclohexylidene-N-methylhydrazinecarbothioamide

S. Tayamon, N. A. Mazlan, T. B. S. A. Ravoof, M. I. Mohamed Tahir and K. A. Crouse

Abstract top

The title compound C8H15N3S has two molecules in the asymmetric unit in which cis-trans isomerism is exhibited around the N(NH)C=S bonds. The cyclohexyl rings in both molecules adopt a chair conformation. In the crystal, N-H...S hydrogen bonding produces dimers, which are interconnected through further N-H...S hydrogen bonds, forming chains along the b-axis direction.

Comment top

To initiate comparative studies between hydrazine carbothioamide Schiff bases (Zhang et al., 2011) and hydrazine carbodithioate derivatives synthesized in our laboratory in our on-going investigations (Khoo et al., 2005; Ravoof et al., 2010, Tan et al. 2012, Paulus et al. 2011, Tayamon et al. 2012), the title compound (C8H15N3S) was synthesized and crystallographically characterized. The compound crystallizes in the monoclinic system, space group P 21/c. There are two independent molecules in the asymmetric unit (Fig. 1), in the thione form with C=S bond distances ranging from 1.6953 (15) Å to 1.6982 (15) Å. The values are intermediate between a C—S single bond (~1.82 Å) and a C=S double bond(~1.56 Å) due to charge delocalization (Sanderson, 1967). The C—N and C=N bond distances range from 1.3269 (19) to 1.3596 (19) Å and 1.281 (2) to 1.2818 (19) Å respectively. N—N bond distances vary from 1.3909 (17) to 1.3989 (17) Å, shorter than a single bond and indicating significant π delocalization along the NNC(S)N moiety.

Cis-trans isomerism is exhibited in the Schiff base around the N(NH)C=S bonds. In both molecules, the methyl group is cis to the thione sulfur along Cn02 – Nn03 (n: 1, 2), and the cyclohexyl group is trans to the thione sulfur along Cn02 – Nn05. Both cyclohexyl rings are in a chair conformation. The two molecules are twisted relative to one another, as shown by the angle between the planes defined by C108–C109–C111–C112 (largest deviation 0.000 Å) and C208–C209–C211–C212 (largest deviation 0.020 Å) in the respective cyclohexyl ring (83.47°), and S101–C102–N103–C104 (largest deviation 0.009 Å) and S201–C202–N203–C204 (largest deviation 0.013 Å) with a dihedral angle of 27.66°. Molecular packing viewed along the a axis shows this orthogonal arrangement of the cyclohexyl rings similar to other subsituted cyclohexyl compounds (Rohr et al., 2009).

The molecular packing is supported by hydrogen bonding through N—H···S interactions (first and second entries in Table 1) creating dimers, which in turn, are also linked through another N—H···S H-bond interaction between dimers (third entry in table 1) creating a chain-like structure along the b axis.

Related literature top

For background to the coordination chemistry of dithiocarbazate derivatives, see: Zhang et al. (2011); Khoo et al. (2005); Ravoof et al. (2010). For the synthesis and methodology, see: Tian et al. (1997); Tarafder et al. (2000); Tan et al. (2012). For related structures, see: Paulus et al. (2011); Tayamon et al. (2012). For on what subject(s)?, see: Cooper et al. (2010); Rohr et al. (2009); Sanderson (1967); Tian et al. (1997).

Experimental top

The title compound was synthesized following established literature procedures (Tian et al., 1997; Tarafder et al., 2000). 4-methyl-3-thiosemicarbazide (1.05 g, 0.01 mol) dissolved in hot absolute ethanol (30 ml) was added dropwise to an equimolar amount of cyclohexanone (1.04 ml) also in hot absolute ethanol (20 ml). The mixture was stirred for about half an hour at about 340 K and 3 h at room temperature. Pale yellow crystals of the Schiff base suitable for X-ray analysis were obtained after 3 days by keeping the solution at room temperature.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level.
2-Cyclohexylidene-N-methylhydrazinecarbothioamide top
Crystal data top
C8H15N3SF(000) = 800
Mr = 185.29Dx = 1.267 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 6569 reflections
a = 10.0538 (3) Åθ = 4–71°
b = 11.0108 (3) ŵ = 2.56 mm1
c = 17.9484 (5) ÅT = 100 K
β = 102.132 (3)°Plate, yellow
V = 1942.52 (10) Å30.27 × 0.22 × 0.10 mm
Z = 8
Data collection top
Agilent Gemini
diffractometer
3414 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 71.3°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1212
Tmin = 0.58, Tmax = 0.77k = 1213
13859 measured reflectionsl = 2220
3754 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 1.01P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3740 reflectionsΔρmax = 0.42 e Å3
217 parametersΔρmin = 0.21 e Å3
0 restraints
Crystal data top
C8H15N3SV = 1942.52 (10) Å3
Mr = 185.29Z = 8
Monoclinic, P21/cCu Kα radiation
a = 10.0538 (3) ŵ = 2.56 mm1
b = 11.0108 (3) ÅT = 100 K
c = 17.9484 (5) Å0.27 × 0.22 × 0.10 mm
β = 102.132 (3)°
Data collection top
Agilent Gemini
diffractometer
3414 reflections with I > 2.0σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
Rint = 0.025
Tmin = 0.58, Tmax = 0.77θmax = 71.3°
13859 measured reflectionsStandard reflections: 0
3754 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.42 e Å3
S = 0.98Δρmin = 0.21 e Å3
3740 reflectionsAbsolute structure: ?
217 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S2010.58434 (4)0.01233 (3)0.30376 (2)0.0187
C2020.60061 (14)0.13128 (13)0.27235 (8)0.0162
N2030.53742 (13)0.22586 (11)0.29493 (7)0.0181
C2040.44282 (16)0.21726 (14)0.34578 (9)0.0209
N2050.67851 (13)0.15375 (11)0.22056 (7)0.0167
N2060.70685 (13)0.27513 (11)0.20908 (7)0.0172
C2070.76628 (14)0.30324 (13)0.15489 (8)0.0164
C2080.80605 (16)0.22007 (13)0.09651 (8)0.0185
C2090.76595 (17)0.27449 (14)0.01581 (9)0.0224
C2100.81075 (18)0.40699 (15)0.01227 (9)0.0253
C2110.75322 (17)0.48442 (14)0.06856 (9)0.0216
C2120.80051 (16)0.43550 (13)0.14981 (9)0.0189
H20420.41050.29740.35320.0328*
H20410.48650.18300.39410.0327*
H20430.36650.16580.32260.0325*
H20820.90470.21000.11020.0244*
H20810.76420.14000.09820.0221*
H20910.80840.22500.01810.0289*
H20920.66760.27110.00070.0289*
H21020.91050.41080.02600.0327*
H21010.77940.43790.03960.0332*
H21110.78190.56870.06650.0267*
H21120.65220.48120.05420.0274*
H21210.89890.44230.16490.0247*
H21220.76120.48190.18620.0250*
H20510.73110.09450.20940.0237*
H20310.55390.29820.27890.0238*
S1010.10077 (4)0.43846 (3)0.32431 (2)0.0195
C1020.09543 (14)0.30514 (14)0.27653 (8)0.0162
N1030.03196 (13)0.20656 (11)0.29422 (7)0.0171
C1040.04378 (16)0.20264 (14)0.35483 (9)0.0198
N1050.15382 (12)0.29552 (11)0.21498 (7)0.0168
N1060.16479 (13)0.17797 (11)0.18731 (7)0.0191
C1070.20173 (15)0.16549 (14)0.12364 (9)0.0180
C1080.23688 (15)0.26264 (14)0.07247 (8)0.0188
C1090.38405 (16)0.24444 (14)0.06287 (9)0.0201
C1100.40502 (17)0.11593 (14)0.03518 (9)0.0228
C1110.36605 (16)0.01991 (14)0.08823 (9)0.0206
C1120.21911 (17)0.03771 (15)0.09779 (10)0.0240
H10410.07700.12130.35700.0331*
H10420.01370.22230.40280.0329*
H10430.12080.25900.34360.0325*
H10810.22260.34470.09150.0246*
H10820.17450.25230.02290.0255*
H10920.44540.25780.11250.0256*
H10910.40470.30450.02750.0262*
H11010.50170.10510.03350.0290*
H11020.34800.10490.01650.0286*
H11120.42870.02590.13910.0258*
H11110.37630.06170.06690.0248*
H11210.19640.01950.13380.0317*
H11220.15530.02680.04830.0307*
H10310.03520.13960.26820.0230*
H10510.21030.35190.20830.0243*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S2010.0218 (2)0.01267 (19)0.0224 (2)0.00031 (13)0.00684 (15)0.00329 (13)
C2020.0161 (7)0.0153 (7)0.0155 (7)0.0016 (5)0.0003 (5)0.0006 (5)
N2030.0214 (6)0.0127 (6)0.0214 (6)0.0004 (5)0.0069 (5)0.0022 (5)
C2040.0213 (8)0.0199 (8)0.0225 (8)0.0000 (6)0.0072 (6)0.0010 (6)
N2050.0202 (6)0.0112 (6)0.0194 (6)0.0009 (5)0.0060 (5)0.0014 (5)
N2060.0187 (6)0.0120 (6)0.0200 (6)0.0007 (5)0.0020 (5)0.0015 (5)
C2070.0161 (7)0.0150 (7)0.0168 (7)0.0006 (5)0.0008 (5)0.0020 (5)
C2080.0216 (7)0.0138 (7)0.0209 (8)0.0012 (6)0.0060 (6)0.0015 (6)
C2090.0308 (8)0.0195 (8)0.0174 (7)0.0022 (6)0.0059 (6)0.0001 (6)
C2100.0362 (9)0.0208 (8)0.0199 (8)0.0026 (7)0.0084 (7)0.0046 (6)
C2110.0257 (8)0.0155 (7)0.0234 (8)0.0004 (6)0.0047 (6)0.0043 (6)
C2120.0218 (7)0.0143 (7)0.0205 (8)0.0010 (6)0.0045 (6)0.0004 (6)
S1010.0230 (2)0.0150 (2)0.0221 (2)0.00106 (13)0.00819 (15)0.00470 (13)
C1020.0149 (7)0.0158 (7)0.0173 (7)0.0027 (5)0.0020 (5)0.0003 (5)
N1030.0195 (6)0.0141 (6)0.0189 (6)0.0002 (5)0.0069 (5)0.0014 (5)
C1040.0210 (7)0.0208 (8)0.0191 (7)0.0006 (6)0.0072 (6)0.0013 (6)
N1050.0189 (6)0.0120 (6)0.0209 (6)0.0016 (5)0.0070 (5)0.0016 (5)
N1060.0196 (6)0.0132 (6)0.0264 (7)0.0010 (5)0.0091 (5)0.0030 (5)
C1070.0149 (7)0.0176 (8)0.0223 (7)0.0020 (6)0.0055 (6)0.0031 (6)
C1080.0222 (8)0.0175 (7)0.0162 (7)0.0024 (6)0.0032 (6)0.0008 (6)
C1090.0232 (8)0.0181 (8)0.0211 (7)0.0016 (6)0.0096 (6)0.0007 (6)
C1100.0249 (8)0.0210 (8)0.0255 (8)0.0007 (6)0.0123 (6)0.0037 (6)
C1110.0240 (8)0.0150 (8)0.0249 (8)0.0004 (6)0.0094 (6)0.0044 (6)
C1120.0269 (8)0.0176 (8)0.0314 (9)0.0059 (6)0.0152 (7)0.0069 (6)
Geometric parameters (Å, º) top
S201—C2021.6982 (15)S101—C1021.6953 (15)
C202—N2031.3269 (19)C102—N1031.331 (2)
C202—N2051.3582 (19)C102—N1051.3596 (19)
N203—C2041.4531 (19)N103—C1041.4537 (18)
N203—H20310.874N103—H10310.877
C204—H20420.959C104—H10410.959
C204—H20410.962C104—H10420.955
C204—H20430.974C104—H10430.980
N205—N2061.3909 (17)N105—N1061.3989 (17)
N205—H20510.889N105—H10510.866
N206—C2071.2818 (19)N106—C1071.281 (2)
C207—C2081.508 (2)C107—C1081.500 (2)
C207—C2121.504 (2)C107—C1121.503 (2)
C208—C2091.541 (2)C108—C1091.538 (2)
C208—H20820.977C108—H10810.987
C208—H20810.980C108—H10820.982
C209—C2101.532 (2)C109—C1101.529 (2)
C209—H20910.979C109—H10920.982
C209—H20920.971C109—H10910.969
C210—C2111.526 (2)C110—C1111.528 (2)
C210—H21020.982C110—H11010.986
C210—H21010.980C110—H11020.990
C211—C2121.534 (2)C111—C1121.535 (2)
C211—H21110.975C111—H11120.997
C211—H21120.995C111—H11110.990
C212—H21210.972C112—H11210.964
C212—H21220.975C112—H11220.987
S201—C202—N203122.94 (11)S101—C102—N103123.45 (11)
S201—C202—N205120.43 (11)S101—C102—N105120.35 (11)
N203—C202—N205116.62 (13)N103—C102—N105116.16 (13)
C202—N203—C204124.01 (13)C102—N103—C104123.75 (13)
C202—N203—H2031118.6C102—N103—H1031119.0
C204—N203—H2031117.4C104—N103—H1031117.2
N203—C204—H2042108.2N103—C104—H1041107.4
N203—C204—H2041110.8N103—C104—H1042110.7
H2042—C204—H2041109.9H1041—C104—H1042109.0
N203—C204—H2043109.3N103—C104—H1043110.0
H2042—C204—H2043109.5H1041—C104—H1043109.4
H2041—C204—H2043109.1H1042—C104—H1043110.2
C202—N205—N206116.23 (12)C102—N105—N106116.12 (12)
C202—N205—H2051118.5C102—N105—H1051117.6
N206—N205—H2051121.5N106—N105—H1051120.8
N205—N206—C207119.15 (12)N105—N106—C107118.37 (13)
N206—C207—C208127.94 (13)N106—C107—C108128.28 (14)
N206—C207—C212115.41 (13)N106—C107—C112116.74 (14)
C208—C207—C212116.66 (13)C108—C107—C112114.90 (13)
C207—C208—C209111.22 (12)C107—C108—C109109.37 (12)
C207—C208—H2082107.3C107—C108—H1081111.7
C209—C208—H2082109.4C109—C108—H1081111.8
C207—C208—H2081110.2C107—C108—H1082106.5
C209—C208—H2081110.5C109—C108—H1082109.2
H2082—C208—H2081108.1H1081—C108—H1082108.0
C208—C209—C210112.84 (13)C108—C109—C110111.01 (13)
C208—C209—H2091107.8C108—C109—H1092108.3
C210—C209—H2091109.5C110—C109—H1092109.3
C208—C209—H2092108.6C108—C109—H1091109.1
C210—C209—H2092108.3C110—C109—H1091110.9
H2091—C209—H2092109.8H1092—C109—H1091108.2
C209—C210—C211110.43 (13)C109—C110—C111111.52 (12)
C209—C210—H2102108.9C109—C110—H1101109.0
C211—C210—H2102108.7C111—C110—H1101108.6
C209—C210—H2101109.3C109—C110—H1102109.0
C211—C210—H2101110.2C111—C110—H1102109.0
H2102—C210—H2101109.3H1101—C110—H1102109.7
C210—C211—C212110.40 (13)C110—C111—C112111.11 (13)
C210—C211—H2111110.5C110—C111—H1112109.2
C212—C211—H2111109.6C112—C111—H1112109.1
C210—C211—H2112108.5C110—C111—H1111109.0
C212—C211—H2112109.2C112—C111—H1111109.9
H2111—C211—H2112108.5H1112—C111—H1111108.5
C211—C212—C207111.64 (12)C111—C112—C107109.33 (13)
C211—C212—H2121109.4C111—C112—H1121111.2
C207—C212—H2121106.9C107—C112—H1121110.2
C211—C212—H2122111.4C111—C112—H1122110.0
C207—C212—H2122109.6C107—C112—H1122107.2
H2121—C212—H2122107.7H1121—C112—H1122108.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N205—H2051···S101i0.892.573.4559 (13)175
N105—H1051···S201ii0.872.593.4484 (13)169
N203—H2031···S201ii0.872.763.4691 (13)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N205—H2051···S101i0.892.573.4559 (13)175
N105—H1051···S201ii0.872.593.4484 (13)169
N203—H2031···S201ii0.872.763.4691 (13)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Acknowledgements top

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 05–01–11–1243RU) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–13–11–986FR). We also thank Siti Khadijah Densabali for collecting the X-ray data. ST and NAM wish to acknowledge the Malaysian Government for sponsorship under the FRGS/RUGS Scheme.

references
References top

Agilent, (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–?.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.

Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.

Paulus, G., Crouse, K. A., Tahir, M. I. M. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370–o1371.

Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.

Rohr, K., Herre, R. & Mahrwald, R. (2009). J. Org. Chem. 74, 3744–3749.

Sanderson, R. T. (1967). Inorganic Chemistry, 1st edition. New York: Reinhold.

Tan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1461–o1462.

Tarafder, M. T. A., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem, 25, 456–460.

Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640–o1641.

Tian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. & Zhang, Z.-Y. (1997). Inorg. Chem. 36, 1247–1252.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.

Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708.