organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-(Benzo[d]thia­zol-2yl-meth­­oxy)-5-chloro­phen­yl)(phen­yl)methanone

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, bCenter for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3-20133 Milan, Italy, and cSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: venugopala@ukzn.ac.za, nksusa@gmail.com

(Received 21 August 2012; accepted 6 October 2012; online 13 October 2012)

In the title compound, C21H14ClNO2S, the dihedral angle between the benzothia­zole and diphenyl methanone groups is 68.6 (2)°. The crystal structure consists of dimeric units generated by C—H⋯N bonds, further linked by C—H⋯O bonds and C—H⋯π and ππ inter­actions [centroid–centroiddistance = 3.856 (2) Å], which lead to a criss-cross assembly parallel to (001).

Related literature

For background to the applications of benzothia­zole derivatives, see: Rana et al. (2007[Rana, A., Siddiqui, N. & Khan, S. A. (2007). J. Pharm. Sci. 69, 10-17.]); Telvekar et al. (2012[Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148-155.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14ClNO2S

  • Mr = 379.84

  • Orthorhombic, P b c a

  • a = 7.4598 (3) Å

  • b = 19.3131 (8) Å

  • c = 24.4002 (9) Å

  • V = 3515.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 K

  • 0.22 × 0.16 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.927, Tmax = 0.990

  • 52834 measured reflections

  • 3206 independent reflections

  • 2576 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.200

  • S = 1.30

  • 3206 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N1i 0.95 2.56 3.432 (5) 153
C5—H5⋯O2ii 0.95 2.59 3.478 (5) 155
C18—H18⋯Cg1iii 0.95 2.62 3.433 (5) 144
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Our interest in the molecular design of the benzothiazole moiety is due to its diverse chemical and biological activities. Benzothiazole derivatives exhibit biological activities as antitumor, antiinflammatory, analgesic, antimicrobial, and potential anti HIV agents etc. Still the variety of biological features of new benzothiazole derivatives are of great scientific interest Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010). Here, we report the single-crystal structure of the title compound, C21H14ClNO2S.

The molecule adopts a conformation with a 68.6 (2)° dihedral angle between the planes of the benzothiazole and diphenyl methanone groups (Fig. 1). The weak C—H···N hydrogen bonds (Table 1, 1st entry) form dimeric units (Fig. 2a), in turn linked by the C—H···O ones (Table 1, 2nd entry) into planar arrays parallel to (001). This 2D structure is reinforced by a C-H···π bond involving the five-membered ring S1/C1/C6/N1/C7 (centroid Cg1) (Table 1, third entry) and a π···π bond between the C10—C14 six-membered ring (centroid Cg2) and the C16—C21 six-membered ring (centroid Cg3), viz., Cg2···Cg3i, (i): 1/2 + x, 1/2 - y, -z, with an intercentroid distance of 3.856 (2) Å, all these interactions leading to the criss-cross assembly depicted in Fig 2b.

Related literature top

For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010).

Experimental top

To a solution of 2-(chloromethyl)-benzo-thiazole (0.5 g, 0.0027 mol) and (5-chloro-2-hydroxyphenyl)(phenyl)methanone (0.0027 mol) in dry THF, dry potassium carbonate (0.38 g, 0.0027 mol) was added and stirred at room temperature. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 0.68) to afford as a white solid product (Yield 70.8%; m. p. 403 (2) K).Suitable crystals for single-crystal X-ray study were obtained by slow evaporation crystallization from ethanol solvent at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H)= 1.2 Ueq(C). The space group might be considered as Pbca only on average, since there are many violations of the a glide condition. This may be the reason for some Fo-Fc discrepancies. Refinement in lower symmetry groups, however, did not improve the results.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor,1997); data reduction: DENZO-SMN (Otwinowski & Minor,1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme with displacement ellipsoids for non-H atoms at 50% probability level.
[Figure 2] Fig. 2. Packing views of the title compound. (a) Showing in detail the formation of dimers (C—H···N bonds) and their interaction (C—H···O bonds. (b). The criss-cross molecular assembly perpendicular to the c axis.
(2-(Benzo[d]thiazol-2yl-methoxy)-5-chlorophenyl)(phenyl)methanone top
Crystal data top
C21H14ClNO2SDx = 1.435 Mg m3
Mr = 379.84Melting point: 403(2) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 560 reflections
a = 7.4598 (3) Åθ = 1.7–25.3°
b = 19.3131 (8) ŵ = 0.35 mm1
c = 24.4002 (9) ÅT = 173 K
V = 3515.4 (2) Å3Plate, colourless
Z = 80.22 × 0.16 × 0.03 mm
F(000) = 1568
Data collection top
Nonius KappaCCD
diffractometer
3206 independent reflections
Radiation source: fine-focus sealed tube2576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
1.2° ϕ scans and ω scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 88
Tmin = 0.927, Tmax = 0.990k = 2323
52834 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.30 w = 1/[σ2(Fo2) + (0.071P)2 + 8.1626P]
where P = (Fo2 + 2Fc2)/3
3206 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C21H14ClNO2SV = 3515.4 (2) Å3
Mr = 379.84Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4598 (3) ŵ = 0.35 mm1
b = 19.3131 (8) ÅT = 173 K
c = 24.4002 (9) Å0.22 × 0.16 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
3206 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2576 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.990Rint = 0.063
52834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.30Δρmax = 0.66 e Å3
3206 reflectionsΔρmin = 0.33 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34601 (15)0.06802 (6)0.39552 (4)0.0309 (3)
Cl10.68528 (18)0.27003 (7)0.68940 (5)0.0470 (4)
O10.4110 (4)0.11200 (15)0.50149 (11)0.0315 (7)
N10.1614 (5)0.02826 (17)0.44408 (14)0.0273 (8)
C60.1481 (5)0.0405 (2)0.38812 (17)0.0270 (9)
C70.2577 (5)0.0259 (2)0.45299 (16)0.0256 (9)
C80.2953 (6)0.0542 (2)0.50881 (16)0.0276 (9)
H8A0.18250.06880.52680.033*
H8B0.35370.01870.53190.033*
O20.5685 (4)0.29934 (15)0.47346 (12)0.0373 (8)
C140.5686 (5)0.2081 (2)0.53676 (16)0.0245 (9)
C150.5962 (5)0.2376 (2)0.48050 (17)0.0258 (9)
C160.6632 (5)0.1936 (2)0.43523 (16)0.0240 (9)
C170.7650 (5)0.1344 (2)0.44537 (16)0.0266 (9)
H170.78720.12030.48200.032*
C130.6296 (5)0.2462 (2)0.58122 (17)0.0286 (9)
H130.69170.28850.57530.034*
C90.4719 (5)0.1466 (2)0.54683 (16)0.0252 (9)
C190.8018 (7)0.1161 (3)0.34894 (19)0.0400 (11)
H190.85010.08990.31950.048*
C100.4403 (6)0.1248 (2)0.60021 (17)0.0305 (9)
H100.37350.08370.60680.037*
C180.8338 (6)0.0963 (2)0.40225 (19)0.0340 (10)
H180.90360.05620.40950.041*
C110.5061 (6)0.1629 (2)0.64375 (17)0.0336 (10)
H110.48620.14770.68030.040*
C10.2398 (6)0.0070 (2)0.35491 (17)0.0286 (9)
C120.6004 (6)0.2229 (2)0.63404 (17)0.0301 (10)
C200.6980 (7)0.1747 (3)0.33833 (18)0.0409 (12)
H200.67300.18780.30160.049*
C50.0510 (6)0.0945 (2)0.36427 (19)0.0347 (10)
H50.01130.12710.38630.042*
C40.0477 (7)0.0993 (2)0.30759 (19)0.0407 (11)
H40.01770.13570.29070.049*
C210.6322 (6)0.2134 (2)0.38092 (18)0.0340 (10)
H210.56470.25400.37350.041*
C20.2347 (7)0.0017 (3)0.29783 (19)0.0400 (11)
H20.29610.03410.27540.048*
C30.1385 (7)0.0517 (3)0.2751 (2)0.0442 (12)
H30.13400.05620.23640.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0343 (6)0.0302 (6)0.0282 (6)0.0080 (5)0.0014 (4)0.0005 (4)
Cl10.0576 (8)0.0537 (8)0.0296 (6)0.0104 (6)0.0051 (5)0.0114 (5)
O10.0351 (17)0.0341 (16)0.0253 (14)0.0140 (14)0.0015 (12)0.0025 (12)
N10.0278 (19)0.0235 (18)0.0308 (18)0.0005 (15)0.0023 (15)0.0018 (15)
C60.023 (2)0.026 (2)0.032 (2)0.0039 (17)0.0003 (17)0.0032 (17)
C70.021 (2)0.025 (2)0.031 (2)0.0018 (17)0.0013 (17)0.0008 (17)
C80.028 (2)0.026 (2)0.029 (2)0.0050 (18)0.0022 (17)0.0020 (17)
O20.051 (2)0.0240 (16)0.0366 (17)0.0032 (14)0.0062 (15)0.0024 (13)
C140.023 (2)0.024 (2)0.027 (2)0.0019 (17)0.0009 (17)0.0010 (16)
C150.022 (2)0.025 (2)0.030 (2)0.0031 (17)0.0016 (17)0.0019 (17)
C160.023 (2)0.023 (2)0.026 (2)0.0022 (17)0.0002 (16)0.0027 (17)
C170.024 (2)0.028 (2)0.027 (2)0.0004 (18)0.0004 (17)0.0006 (17)
C130.026 (2)0.028 (2)0.032 (2)0.0024 (18)0.0015 (18)0.0033 (17)
C90.023 (2)0.028 (2)0.025 (2)0.0003 (17)0.0020 (16)0.0040 (16)
C190.044 (3)0.043 (3)0.033 (2)0.005 (2)0.011 (2)0.011 (2)
C100.030 (2)0.031 (2)0.030 (2)0.0041 (19)0.0025 (18)0.0026 (18)
C180.026 (2)0.032 (2)0.044 (3)0.0014 (18)0.0013 (19)0.007 (2)
C110.036 (2)0.041 (3)0.024 (2)0.001 (2)0.0025 (18)0.0024 (19)
C10.025 (2)0.031 (2)0.030 (2)0.0018 (18)0.0015 (18)0.0024 (18)
C120.029 (2)0.035 (2)0.026 (2)0.0031 (19)0.0021 (17)0.0066 (18)
C200.056 (3)0.044 (3)0.023 (2)0.005 (2)0.000 (2)0.004 (2)
C50.033 (2)0.028 (2)0.043 (3)0.001 (2)0.002 (2)0.005 (2)
C40.044 (3)0.038 (3)0.040 (3)0.004 (2)0.008 (2)0.014 (2)
C210.043 (3)0.029 (2)0.030 (2)0.002 (2)0.004 (2)0.0076 (18)
C20.046 (3)0.043 (3)0.030 (2)0.006 (2)0.003 (2)0.001 (2)
C30.049 (3)0.053 (3)0.031 (2)0.004 (2)0.002 (2)0.008 (2)
Geometric parameters (Å, º) top
S1—C11.731 (4)C13—H130.9500
S1—C71.750 (4)C9—C101.389 (6)
Cl1—C121.747 (4)C19—C181.377 (7)
O1—C91.370 (5)C19—C201.396 (7)
O1—C81.422 (5)C19—H190.9500
N1—C71.288 (5)C10—C111.383 (6)
N1—C61.389 (5)C10—H100.9500
C6—C51.397 (6)C18—H180.9500
C6—C11.402 (6)C11—C121.377 (6)
C7—C81.494 (6)C11—H110.9500
C8—H8A0.9900C1—C21.397 (6)
C8—H8B0.9900C20—C211.371 (6)
O2—C151.223 (5)C20—H200.9500
C14—C131.388 (6)C5—C41.386 (6)
C14—C91.411 (6)C5—H50.9500
C14—C151.500 (6)C4—C31.390 (7)
C15—C161.480 (6)C4—H40.9500
C16—C171.394 (6)C21—H210.9500
C16—C211.399 (6)C2—C31.372 (7)
C17—C181.383 (6)C2—H20.9500
C17—H170.9500C3—H30.9500
C13—C121.382 (6)
C1—S1—C788.3 (2)C20—C19—H19120.1
C9—O1—C8118.8 (3)C11—C10—C9119.9 (4)
C7—N1—C6110.1 (3)C11—C10—H10120.0
N1—C6—C5125.0 (4)C9—C10—H10120.0
N1—C6—C1115.0 (4)C19—C18—C17120.5 (4)
C5—C6—C1120.0 (4)C19—C18—H18119.8
N1—C7—C8123.8 (4)C17—C18—H18119.8
N1—C7—S1116.9 (3)C12—C11—C10119.9 (4)
C8—C7—S1119.3 (3)C12—C11—H11120.1
O1—C8—C7106.6 (3)C10—C11—H11120.1
O1—C8—H8A110.4C2—C1—C6121.0 (4)
C7—C8—H8A110.4C2—C1—S1129.3 (4)
O1—C8—H8B110.4C6—C1—S1109.7 (3)
C7—C8—H8B110.4C11—C12—C13121.0 (4)
H8A—C8—H8B108.6C11—C12—Cl1119.4 (3)
C13—C14—C9118.6 (4)C13—C12—Cl1119.6 (3)
C13—C14—C15118.0 (4)C21—C20—C19120.0 (4)
C9—C14—C15123.3 (4)C21—C20—H20120.0
O2—C15—C16120.8 (4)C19—C20—H20120.0
O2—C15—C14118.4 (4)C4—C5—C6118.3 (4)
C16—C15—C14120.7 (3)C4—C5—H5120.8
C17—C16—C21118.8 (4)C6—C5—H5120.8
C17—C16—C15121.5 (4)C5—C4—C3121.1 (4)
C21—C16—C15119.6 (4)C5—C4—H4119.5
C18—C17—C16120.2 (4)C3—C4—H4119.5
C18—C17—H17119.9C20—C21—C16120.7 (4)
C16—C17—H17119.9C20—C21—H21119.7
C12—C13—C14120.3 (4)C16—C21—H21119.7
C12—C13—H13119.8C3—C2—C1118.2 (4)
C14—C13—H13119.8C3—C2—H2120.9
O1—C9—C10123.6 (4)C1—C2—H2120.9
O1—C9—C14116.1 (3)C2—C3—C4121.4 (4)
C10—C9—C14120.4 (4)C2—C3—H3119.3
C18—C19—C20119.8 (4)C4—C3—H3119.3
C18—C19—H19120.1
C7—N1—C6—C5178.9 (4)O1—C9—C10—C11179.8 (4)
C7—N1—C6—C10.2 (5)C14—C9—C10—C111.0 (6)
C6—N1—C7—C8178.7 (4)C20—C19—C18—C170.5 (7)
C6—N1—C7—S10.7 (5)C16—C17—C18—C190.4 (6)
C1—S1—C7—N10.8 (3)C9—C10—C11—C121.0 (7)
C1—S1—C7—C8178.6 (3)N1—C6—C1—C2178.7 (4)
C9—O1—C8—C7177.9 (3)C5—C6—C1—C20.5 (7)
N1—C7—C8—O1177.7 (4)N1—C6—C1—S10.4 (5)
S1—C7—C8—O12.9 (5)C5—C6—C1—S1179.6 (3)
C13—C14—C15—O242.2 (5)C7—S1—C1—C2178.3 (5)
C9—C14—C15—O2132.7 (4)C7—S1—C1—C60.6 (3)
C13—C14—C15—C16135.0 (4)C10—C11—C12—C130.5 (7)
C9—C14—C15—C1650.1 (6)C10—C11—C12—Cl1179.2 (3)
O2—C15—C16—C17152.4 (4)C14—C13—C12—C112.0 (6)
C14—C15—C16—C1724.8 (6)C14—C13—C12—Cl1177.7 (3)
O2—C15—C16—C2124.3 (6)C18—C19—C20—C211.6 (7)
C14—C15—C16—C21158.5 (4)N1—C6—C5—C4178.8 (4)
C21—C16—C17—C180.1 (6)C1—C6—C5—C40.3 (6)
C15—C16—C17—C18176.6 (4)C6—C5—C4—C30.0 (7)
C9—C14—C13—C122.0 (6)C19—C20—C21—C161.9 (7)
C15—C14—C13—C12177.1 (4)C17—C16—C21—C201.1 (7)
C8—O1—C9—C106.1 (6)C15—C16—C21—C20177.8 (4)
C8—O1—C9—C14172.8 (3)C6—C1—C2—C30.5 (7)
C13—C14—C9—O1178.4 (3)S1—C1—C2—C3179.3 (4)
C15—C14—C9—O13.6 (6)C1—C2—C3—C40.2 (8)
C13—C14—C9—C100.5 (6)C5—C4—C3—C20.0 (8)
C15—C14—C9—C10175.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N1i0.952.563.432 (5)153
C5—H5···O2ii0.952.593.478 (5)155
C18—H18···Cg1iii0.952.623.433 (5)144
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H14ClNO2S
Mr379.84
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)7.4598 (3), 19.3131 (8), 24.4002 (9)
V3)3515.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.22 × 0.16 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.927, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
52834, 3206, 2576
Rint0.063
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.200, 1.30
No. of reflections3206
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.33

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor,1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N1i0.95002.56003.432 (5)153
C5—H5···O2ii0.95002.59003.478 (5)155
C18—H18···Cg1iii0.95002.62003.433 (5)144
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z; (iii) x+1, y, z.
 

Acknowledgements

The authors wish to thank the University of KwaZulu-Natal, South Africa, for facilities and Dr Hong Su, Department of Chemistry, University of Cape Town, for the data collection.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. A. (2007). J. Pharm. Sci. 69, 10–17.  CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148–155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds