metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­butyl­tetra­kis­(μ2-hydrogen phenyl­phospho­nato)ditin(IV)]

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques-Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: diasseam@yahoo.fr

(Received 16 August 2012; accepted 27 September 2012; online 6 October 2012)

In the title compound, [Sn2(C4H9)4(C6H6PO3)4]n, the basic unit is a dimer containing two symmetry-related SnIV atoms bridged by two hydrogenphenylphosphonate anions. This fragment is located about an inversion center, and each SnIV atom is linked to two other hydrogenphenylphosphonate anions, giving a layered structure parallel to (010). The coordination geometry for the SnIV atoms is close to octa­hedral. The layers are connected via O—H⋯O hydrogen bonds, generating a three-dimensional network. One butyl group is disordered over two sets of sites, with occupancies of 0.49 (2) and 0.51 (2).

Related literature

For medicinal applications of SnIV compounds, see: Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, 16. Amsterdam: Elsevier.]). For the biocidal activity of organotin compounds, see: Molloy et al. (1981[Molloy, K. C., Hossain, M. B., Van der Helm, D., Cunningham, D. & Zuckerman, J. J. (1981). Inorg. Chem. 20, 2402-2407.]). For background to the search for new organotin compounds, see: Holmes et al. (1988[Holmes, R. R., Swamy, K. C. K., Schmid, C. G. & Day, R. O. (1988). J. Am. Chem. Soc. 110, 7060-7066.]); Hadjikakou & Hadjiliadis (2009[Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 235-249.]). For work in this field carried out by the authors, see: Diassé-Sarr et al. (1997[Diassé-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223-229.]); Sall et al. (1992[Sall, A. S., Sarr, O. & Diop, L. (1992). Bull. Chem. Soc. Ethiop. 6, 11-14.]); Boye & Diassé-Sarr (2007[Boye, M. S. & Diassé-Sarr, A. (2007). C. R. Chim. 10, 489-492.]); Diop et al. (2011[Diop, T., Diop, L., Diop, C. A. K., Molloy, K. C. & Kociok-Köhn, G. (2011). Acta Cryst. E67, m1872-m1873.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C4H9)4(C6H6PO3)4]

  • Mr = 1094.14

  • Triclinic, [P \overline 1]

  • a = 11.0258 (3) Å

  • b = 13.8500 (4) Å

  • c = 16.0177 (4) Å

  • α = 74.074 (1)°

  • β = 89.742 (1)°

  • γ = 77.291 (1)°

  • V = 2290.44 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.10 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.699, Tmax = 0.882

  • 35391 measured reflections

  • 10394 independent reflections

  • 8145 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 1.05

  • 10394 reflections

  • 570 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.73 e Å−3

  • Δρmin = −1.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O10i 0.87 (2) 1.80 (1) 2.656 (5) 172 (6)
O6—H6⋯O1 0.86 (2) 1.77 (1) 2.628 (5) 172 (6)
O9—H9⋯O4 0.87 (2) 1.83 (2) 2.662 (5) 159 (6)
O12—H12⋯O8ii 0.88 (2) 1.78 (2) 2.633 (5) 168 (6)
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The interest to synthesize new organotin derivatives is related to their various applications in different fields: agrochemicals, surface disinfectants and marine antifouling paints, etc. (Evans & Karpel, 1985); thus many groups have been involved in the search for new organotin compounds (Holmes et al., 1988; Hadjikakou & Hadjiliadis, 2009). Our group has yet published some papers dealing with SnBu2, SnMe3 and SnPh3-residues containing derivatives (Diassé-Sarr et al., 1997; Sall et al., 1992; Boye & Diassé-Sarr, 2007). In continuation of this work, we have initiated here the study of the interactions between PhPO3H2 and SnBu2Cl2 which yielded Sn2Bu4(PhPO3H)4 . The phosphorous acids are very important in in vivo systems. Phosphorous acids are known for their biocidal activities, as some organotin compounds (Molloy et al., 1981). Combining them seems worthy for having specific derivations allowing a positive combination of that property. This explains our focus on that type of compounds.

The asymmetric unit of the title compound contains two dibutyltin(IV) units and four hydrogen phenylphosphonates, leading to [SnBu2(PhPO3H)2]2 formula (Fig. 1). The structure consists to two equivalents Sn1 atoms bridged by two hydrogenophenylphosphonates, generating a dimer. This fragment is located on a inversion center. Each Sn1 atom is linked to two others dimers based on Sn2 atoms, via other bridging hydrogenophenylphosphonates (P2, P3, P4), generating a 2D polymer. Hydrogen bonds O—H···O involving the P—OH groups of the hydrogenophenylphosphonates give a 3D crystal structure (fig. 2).

The hydrogen bonds lead to almost equal P—O bond distances [P1—O1: 1.513 (3) Å, P1—O2: 1.516 (3) Å, different of the P—OH bond: P1—O3: 1.563 (3) Å], as reported for dicyclohexylammonium trimethylbis(hydrogen phenylphosphonato)-stannate(IV) (Diop et al., 2011). The geometry around the P atom is a distorted tetrahedron [O1—P1—O2: 113.49 (18)°, O1—P1—C23: 109.6 (2)°]. The sum of the O—Sn—O angles is 360.13° for Sn1 and the C1—Sn1—C5 angle value of 174.37 (18)° indicates some deviation from ideal trans octahedral arrangement around the SnIV ions.

Related literature top

For medicinal applications of SnIV compounds, see: Evans & Karpel (1985). For the biocidal activity of organotin compounds, see: Molloy et al. (1981). For background to the search for new organotin compounds, see: Holmes et al. (1988); Hadjikakou & Hadjiliadis (2009). For work in this field carried out by the authors, see: Diassé-Sarr et al. (1997); Sall et al. (1992); Boye & Diassé-Sarr (2007); Diop et al. (2011).

Experimental top

The title compound has been synthesized by allowing PhPO3H2 (0.2 g) to react with SnBu2Cl2 (0.1 g) in ethanol (1/1 ratio). The mixture was stirred for two hours and submitted to a slow solvent evaporation at room temperature, giving, after some days, regular colorless crystals suitable for X-ray work (m.p. 463 K).

Refinement top

One butyl group was found to be disordered: atoms C14, C15 and C16 are disordered with C14A, C15A, C16A, and occupancy factors converged to 0.49 (2) and 0.51 (2), respectively. Hydroxyl H atoms (H3, H6, H9 and H12) were found in a difference map and refined freely, although with restrained bond lengths. Other H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with C—H = 0.95 (aromatic CH), 0.98 (methyl CH3) or 0.99 Å (methylene CH2 groups). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom); x = 1.2 or 1.5.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Three dimensional structure showing the hydrogen bonds as dotted lines.
[Figure 2] Fig. 2. A part of the crystal structure.
Poly[tetrabutyltetrakis(µ2-hydrogen phenylphosphonato)ditin(IV) top
Crystal data top
[Sn2(C4H9)4(C6H6PO3)4]Z = 2
Mr = 1094.14F(000) = 1112
Triclinic, P1Dx = 1.586 Mg m3
Hall symbol: -P 1Melting point: 463 K
a = 11.0258 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.8500 (4) ÅCell parameters from 31068 reflections
c = 16.0177 (4) Åθ = 2.9–27.5°
α = 74.074 (1)°µ = 1.29 mm1
β = 89.742 (1)°T = 150 K
γ = 77.291 (1)°Plate, colourless
V = 2290.44 (11) Å30.30 × 0.25 × 0.10 mm
Data collection top
Nonius Kappa CCD
diffractometer
10394 independent reflections
Radiation source: fine-focus sealed tube8145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
525 1.1 degree images with ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1414
Tmin = 0.699, Tmax = 0.882k = 1717
35391 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0765P)2 + 5.2512P]
where P = (Fo2 + 2Fc2)/3
10394 reflections(Δ/σ)max = 0.001
570 parametersΔρmax = 2.73 e Å3
4 restraintsΔρmin = 1.93 e Å3
0 constraints
Crystal data top
[Sn2(C4H9)4(C6H6PO3)4]γ = 77.291 (1)°
Mr = 1094.14V = 2290.44 (11) Å3
Triclinic, P1Z = 2
a = 11.0258 (3) ÅMo Kα radiation
b = 13.8500 (4) ŵ = 1.29 mm1
c = 16.0177 (4) ÅT = 150 K
α = 74.074 (1)°0.30 × 0.25 × 0.10 mm
β = 89.742 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
10394 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
8145 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.882Rint = 0.060
35391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.73 e Å3
10394 reflectionsΔρmin = 1.93 e Å3
570 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.60466 (3)0.00706 (2)0.145389 (18)0.01988 (10)
Sn21.09960 (3)0.00860 (2)0.353582 (18)0.02054 (10)
P10.66865 (10)0.05723 (9)0.07463 (7)0.0202 (2)
P20.89510 (10)0.05951 (9)0.16939 (7)0.0211 (2)
P30.80107 (10)0.05415 (10)0.42447 (7)0.0216 (2)
P41.42610 (11)0.06359 (10)0.32974 (7)0.0225 (2)
O10.7119 (3)0.0116 (3)0.0204 (2)0.0240 (7)
O20.5310 (3)0.0664 (3)0.0920 (2)0.0252 (7)
O30.7537 (3)0.0124 (2)0.1238 (2)0.0257 (7)
H30.732 (6)0.007 (5)0.1791 (16)0.06 (2)*
O40.7698 (3)0.0443 (3)0.2040 (2)0.0251 (7)
O51.0042 (3)0.0149 (3)0.2355 (2)0.0274 (7)
O60.9268 (3)0.0072 (3)0.0935 (2)0.0298 (8)
H60.856 (3)0.003 (4)0.074 (4)0.036*
O70.9299 (3)0.0723 (3)0.4037 (2)0.0276 (7)
O80.7875 (3)0.0056 (3)0.5202 (2)0.0261 (7)
O90.7634 (3)0.0200 (3)0.3762 (2)0.0288 (8)
H90.774 (5)0.014 (4)0.3214 (15)0.035*
O101.2932 (3)0.0490 (3)0.2950 (2)0.0256 (7)
O111.5111 (3)0.0171 (3)0.2644 (2)0.0265 (7)
O121.4275 (3)0.0133 (3)0.4068 (2)0.0306 (8)
H121.358 (3)0.004 (5)0.435 (4)0.047 (18)*
C10.5157 (4)0.1500 (4)0.0917 (3)0.0272 (10)
H1A0.58130.18960.07790.033*
H1B0.47190.15650.03600.033*
C20.4232 (5)0.2014 (4)0.1454 (4)0.0394 (13)
H2A0.46790.20430.19770.047*
H2B0.36170.15880.16500.047*
C30.3536 (6)0.3111 (5)0.0954 (4)0.0504 (16)
H3A0.31410.30910.04070.060*
H3B0.28660.33630.13080.060*
C40.4383 (7)0.3856 (5)0.0741 (5)0.063 (2)
H4A0.48190.38450.12760.094*
H4B0.38870.45530.04690.094*
H4C0.49940.36520.03380.094*
C50.7103 (5)0.1601 (4)0.1952 (3)0.0286 (10)
H5A0.77510.15970.23760.034*
H5B0.65440.20220.22770.034*
C60.7747 (5)0.2147 (4)0.1303 (4)0.0369 (12)
H6A0.71350.20720.08250.044*
H6B0.84180.18090.10460.044*
C70.8300 (5)0.3290 (4)0.1724 (4)0.0430 (14)
H7A0.88680.35590.13180.052*
H7B0.88050.33610.22560.052*
C80.7361 (6)0.3947 (5)0.1965 (5)0.0573 (18)
H8A0.68620.37490.24240.086*
H8B0.77970.46740.21740.086*
H8C0.68150.38470.14530.086*
C91.0962 (5)0.1487 (4)0.4105 (3)0.0289 (10)
H9A1.18280.18780.42890.035*
H9B1.04910.15310.46360.035*
C101.0403 (6)0.2029 (4)0.3545 (4)0.0444 (14)
H10A1.09650.21240.30760.053*
H10B0.95950.15850.32690.053*
C111.0199 (8)0.3085 (6)0.4069 (5)0.066 (2)
H11A0.96890.29950.45640.080*
H11B0.97240.33510.36930.080*
C121.1337 (10)0.3830 (7)0.4396 (8)0.102 (4)
H12A1.18340.39420.39080.153*
H12B1.11470.44820.47280.153*
H12C1.18070.35770.47750.153*
C131.1316 (5)0.1580 (4)0.3025 (3)0.0323 (11)
H13A1.22300.14970.30130.039*0.49 (2)
H13B1.09850.18220.24120.039*0.49 (2)
H13C1.20900.15150.27090.039*0.51 (2)
H13D1.06260.19840.25910.039*0.51 (2)
C141.087 (2)0.2390 (14)0.3390 (18)0.061 (7)0.49 (2)
H14A1.12960.22070.39740.073*0.49 (2)
H14B0.99740.24310.34740.073*0.49 (2)
C151.1017 (17)0.3441 (13)0.2907 (13)0.040 (4)0.49 (2)
H15A1.05240.36550.23460.048*0.49 (2)
H15B1.19030.33900.27730.048*0.49 (2)
C161.064 (3)0.4296 (12)0.3353 (15)0.083 (8)0.49 (2)
H16A0.97270.45300.33070.125*0.49 (2)
H16B1.10090.48750.30700.125*0.49 (2)
H16C1.09290.40310.39670.125*0.49 (2)
C14A1.1434 (16)0.2205 (13)0.3656 (10)0.037 (4)0.51 (2)
H14C1.07430.21650.40510.044*0.51 (2)
H14D1.22230.18820.40150.044*0.51 (2)
C15A1.1416 (17)0.3335 (14)0.3234 (14)0.043 (4)0.51 (2)
H15C1.18090.35990.36530.051*0.51 (2)
H15D1.19320.33840.27230.051*0.51 (2)
C16A1.0160 (13)0.4011 (14)0.2946 (13)0.065 (6)0.51 (2)
H16D0.97700.37740.25150.097*0.51 (2)
H16E1.02370.47220.26860.097*0.51 (2)
H16F0.96440.39860.34480.097*0.51 (2)
C180.8176 (5)0.1993 (4)0.1217 (4)0.0385 (13)
H180.88640.14150.10970.046*
C190.8366 (6)0.2982 (5)0.1480 (5)0.0550 (18)
H190.91900.30830.15390.066*
C200.7368 (6)0.3827 (5)0.1659 (4)0.0501 (16)
H200.75090.45040.18460.060*
C210.6185 (6)0.3688 (4)0.1567 (4)0.0464 (15)
H210.55030.42700.16840.056*
C220.5972 (5)0.2706 (4)0.1305 (4)0.0363 (12)
H220.51430.26160.12460.044*
C230.6961 (4)0.1852 (4)0.1128 (3)0.0230 (9)
C240.8867 (5)0.1947 (4)0.1239 (3)0.0286 (10)
C250.7865 (5)0.2678 (4)0.1385 (4)0.0388 (13)
H250.71990.24650.17090.047*
C260.7844 (6)0.3719 (5)0.1056 (5)0.0556 (18)
H260.71460.42200.11360.067*
C270.8827 (7)0.4030 (5)0.0614 (5)0.0571 (18)
H270.88200.47430.04050.068*
C280.9822 (6)0.3304 (5)0.0477 (4)0.0528 (17)
H281.04950.35220.01650.063*
C290.9856 (5)0.2271 (5)0.0784 (4)0.0402 (13)
H291.05500.17780.06870.048*
C300.6932 (4)0.1762 (4)0.3882 (3)0.0264 (10)
C310.7309 (6)0.2674 (4)0.3687 (4)0.0451 (14)
H310.81710.26670.37260.054*
C320.6441 (8)0.3607 (5)0.3434 (5)0.066 (2)
H320.67070.42370.32950.079*
C330.5190 (7)0.3615 (5)0.3384 (5)0.060 (2)
H330.45950.42540.32070.072*
C340.4804 (6)0.2714 (5)0.3586 (5)0.0534 (17)
H340.39390.27290.35530.064*
C350.5654 (5)0.1783 (5)0.3838 (4)0.0386 (13)
H350.53780.11570.39810.046*
C361.4922 (4)0.1989 (4)0.3735 (3)0.0288 (10)
C371.4313 (5)0.2721 (4)0.3611 (4)0.0389 (13)
H371.35200.25090.33040.047*
C381.4865 (6)0.3759 (5)0.3935 (4)0.0491 (15)
H381.44420.42610.38600.059*
C391.6026 (6)0.4071 (5)0.4366 (4)0.0530 (17)
H391.64020.47840.45830.064*
C401.6642 (6)0.3346 (5)0.4481 (4)0.0511 (16)
H401.74410.35630.47790.061*
C411.6103 (5)0.2309 (5)0.4165 (4)0.0400 (13)
H411.65340.18130.42390.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01548 (16)0.02907 (18)0.01582 (16)0.00556 (12)0.00436 (11)0.00712 (12)
Sn20.01641 (16)0.03061 (18)0.01525 (16)0.00626 (12)0.00486 (11)0.00684 (12)
P10.0162 (5)0.0304 (6)0.0150 (5)0.0061 (4)0.0047 (4)0.0075 (5)
P20.0178 (5)0.0315 (6)0.0146 (5)0.0058 (5)0.0038 (4)0.0071 (5)
P30.0176 (5)0.0327 (6)0.0160 (5)0.0066 (5)0.0052 (4)0.0086 (5)
P40.0197 (5)0.0338 (6)0.0146 (5)0.0073 (5)0.0058 (4)0.0068 (5)
O10.0211 (16)0.0335 (17)0.0171 (15)0.0070 (13)0.0038 (12)0.0060 (13)
O20.0196 (15)0.0360 (18)0.0211 (16)0.0056 (13)0.0002 (13)0.0104 (14)
O30.0261 (17)0.0300 (18)0.0194 (16)0.0001 (14)0.0019 (13)0.0091 (14)
O40.0200 (16)0.0384 (19)0.0189 (16)0.0096 (14)0.0054 (12)0.0093 (14)
O50.0247 (17)0.0393 (19)0.0187 (16)0.0078 (14)0.0039 (13)0.0086 (14)
O60.0268 (18)0.043 (2)0.0231 (17)0.0060 (16)0.0053 (14)0.0168 (15)
O70.0203 (16)0.0413 (19)0.0243 (17)0.0092 (14)0.0130 (13)0.0127 (15)
O80.0205 (16)0.0383 (19)0.0174 (15)0.0051 (14)0.0072 (12)0.0058 (13)
O90.0354 (19)0.0348 (19)0.0202 (16)0.0114 (15)0.0101 (14)0.0116 (15)
O100.0209 (16)0.0365 (19)0.0205 (16)0.0073 (14)0.0056 (13)0.0092 (14)
O110.0243 (16)0.0390 (19)0.0168 (16)0.0081 (14)0.0115 (13)0.0083 (14)
O120.0263 (18)0.048 (2)0.0225 (17)0.0125 (16)0.0069 (14)0.0147 (15)
C10.026 (2)0.031 (3)0.022 (2)0.0052 (19)0.0074 (19)0.0047 (19)
C20.045 (3)0.032 (3)0.036 (3)0.002 (2)0.019 (2)0.008 (2)
C30.048 (4)0.045 (3)0.052 (4)0.002 (3)0.019 (3)0.014 (3)
C40.071 (5)0.038 (4)0.076 (5)0.006 (3)0.013 (4)0.013 (3)
C50.029 (2)0.035 (3)0.021 (2)0.006 (2)0.0024 (19)0.007 (2)
C60.031 (3)0.040 (3)0.040 (3)0.007 (2)0.013 (2)0.013 (2)
C70.036 (3)0.038 (3)0.054 (4)0.003 (2)0.011 (3)0.016 (3)
C80.050 (4)0.043 (4)0.080 (5)0.011 (3)0.018 (4)0.018 (3)
C90.030 (3)0.033 (3)0.023 (2)0.009 (2)0.0009 (19)0.006 (2)
C100.060 (4)0.038 (3)0.040 (3)0.018 (3)0.002 (3)0.013 (3)
C110.072 (5)0.062 (5)0.070 (5)0.027 (4)0.001 (4)0.018 (4)
C120.104 (8)0.062 (5)0.131 (9)0.022 (5)0.028 (7)0.009 (6)
C130.038 (3)0.037 (3)0.022 (2)0.013 (2)0.004 (2)0.004 (2)
C140.053 (12)0.043 (9)0.095 (18)0.022 (9)0.049 (12)0.024 (10)
C150.031 (9)0.031 (7)0.057 (11)0.002 (7)0.008 (6)0.012 (7)
C160.14 (2)0.044 (9)0.082 (14)0.030 (10)0.035 (13)0.040 (9)
C14A0.032 (8)0.049 (8)0.033 (7)0.014 (7)0.001 (6)0.012 (6)
C15A0.033 (9)0.044 (8)0.059 (12)0.018 (8)0.016 (7)0.020 (9)
C16A0.039 (8)0.061 (11)0.081 (13)0.005 (7)0.010 (7)0.004 (9)
C180.026 (3)0.044 (3)0.046 (3)0.013 (2)0.006 (2)0.010 (3)
C190.040 (3)0.052 (4)0.075 (5)0.027 (3)0.013 (3)0.009 (3)
C200.063 (4)0.037 (3)0.055 (4)0.024 (3)0.014 (3)0.009 (3)
C210.049 (4)0.033 (3)0.053 (4)0.008 (3)0.008 (3)0.006 (3)
C220.028 (3)0.037 (3)0.041 (3)0.006 (2)0.007 (2)0.007 (2)
C230.022 (2)0.030 (2)0.019 (2)0.0102 (18)0.0042 (17)0.0079 (18)
C240.028 (2)0.032 (3)0.026 (2)0.010 (2)0.0024 (19)0.005 (2)
C250.031 (3)0.038 (3)0.050 (3)0.010 (2)0.005 (2)0.014 (3)
C260.050 (4)0.034 (3)0.080 (5)0.003 (3)0.004 (3)0.017 (3)
C270.064 (4)0.036 (3)0.070 (5)0.022 (3)0.002 (4)0.005 (3)
C280.056 (4)0.052 (4)0.050 (4)0.026 (3)0.010 (3)0.002 (3)
C290.038 (3)0.043 (3)0.037 (3)0.012 (2)0.009 (2)0.004 (2)
C300.026 (2)0.033 (3)0.019 (2)0.0016 (19)0.0037 (18)0.0097 (19)
C310.041 (3)0.036 (3)0.057 (4)0.013 (3)0.007 (3)0.008 (3)
C320.086 (6)0.033 (3)0.073 (5)0.011 (3)0.013 (4)0.009 (3)
C330.066 (5)0.044 (4)0.053 (4)0.024 (3)0.010 (3)0.014 (3)
C340.039 (3)0.050 (4)0.063 (4)0.009 (3)0.009 (3)0.017 (3)
C350.028 (3)0.044 (3)0.045 (3)0.006 (2)0.000 (2)0.015 (3)
C360.027 (2)0.037 (3)0.020 (2)0.007 (2)0.0071 (19)0.006 (2)
C370.035 (3)0.041 (3)0.040 (3)0.007 (2)0.006 (2)0.012 (2)
C380.054 (4)0.032 (3)0.059 (4)0.013 (3)0.011 (3)0.007 (3)
C390.057 (4)0.037 (3)0.050 (4)0.005 (3)0.012 (3)0.001 (3)
C400.044 (3)0.051 (4)0.042 (3)0.002 (3)0.000 (3)0.004 (3)
C410.040 (3)0.043 (3)0.031 (3)0.006 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
Sn1—C12.116 (5)C12—H12C0.9800
Sn1—C52.117 (5)C13—C141.398 (19)
Sn1—O2i2.140 (3)C13—C14A1.522 (16)
Sn1—O11ii2.149 (3)C13—H13A0.9900
Sn1—O12.303 (3)C13—H13B0.9900
Sn1—O42.378 (3)C13—H13C0.9900
Sn2—C132.113 (5)C13—H13D0.9900
Sn2—C92.127 (5)C14—C151.49 (3)
Sn2—O72.138 (3)C14—H14A0.9900
Sn2—O52.139 (3)C14—H14B0.9900
Sn2—O8iii2.317 (3)C15—C161.53 (3)
Sn2—O102.391 (3)C15—H15A0.9900
P1—O11.513 (3)C15—H15B0.9900
P1—O21.516 (3)C16—H16A0.9800
P1—O31.563 (3)C16—H16B0.9800
P1—C231.802 (5)C16—H16C0.9800
P2—O51.509 (3)C14A—C15A1.52 (2)
P2—O41.522 (3)C14A—H14C0.9900
P2—O61.580 (4)C14A—H14D0.9900
P2—C241.795 (5)C15A—C16A1.49 (2)
P3—O71.517 (3)C15A—H15C0.9900
P3—O81.518 (3)C15A—H15D0.9900
P3—O91.566 (4)C16A—H16D0.9800
P3—C301.786 (5)C16A—H16E0.9800
P4—O111.508 (3)C16A—H16F0.9800
P4—O101.521 (3)C18—C191.380 (8)
P4—O121.577 (4)C18—C231.398 (7)
P4—C361.794 (5)C18—H180.9500
O2—Sn1i2.140 (3)C19—C201.383 (9)
O3—H30.87 (2)C19—H190.9500
O6—H60.861 (19)C20—C211.361 (9)
O8—Sn2iii2.317 (3)C20—H200.9500
O9—H90.867 (19)C21—C221.382 (8)
O11—Sn1iv2.149 (3)C21—H210.9500
O12—H120.88 (2)C22—C231.385 (7)
C1—C21.514 (7)C22—H220.9500
C1—H1A0.9900C24—C251.391 (7)
C1—H1B0.9900C24—C291.397 (7)
C2—C31.537 (8)C25—C261.388 (8)
C2—H2A0.9900C25—H250.9500
C2—H2B0.9900C26—C271.376 (10)
C3—C41.511 (9)C26—H260.9500
C3—H3A0.9900C27—C281.377 (10)
C3—H3B0.9900C27—H270.9500
C4—H4A0.9800C28—C291.371 (8)
C4—H4B0.9800C28—H280.9500
C4—H4C0.9800C29—H290.9500
C5—C61.531 (7)C30—C311.371 (7)
C5—H5A0.9900C30—C351.405 (7)
C5—H5B0.9900C31—C321.386 (9)
C6—C71.525 (8)C31—H310.9500
C6—H6A0.9900C32—C331.379 (11)
C6—H6B0.9900C32—H320.9500
C7—C81.506 (9)C33—C341.362 (10)
C7—H7A0.9900C33—H330.9500
C7—H7B0.9900C34—C351.375 (8)
C8—H8A0.9800C34—H340.9500
C8—H8B0.9800C35—H350.9500
C8—H8C0.9800C36—C371.389 (8)
C9—C101.524 (7)C36—C411.398 (7)
C9—H9A0.9900C37—C381.385 (8)
C9—H9B0.9900C37—H370.9500
C10—C111.537 (9)C38—C391.379 (9)
C10—H10A0.9900C38—H380.9500
C10—H10B0.9900C39—C401.381 (10)
C11—C121.433 (11)C39—H390.9500
C11—H11A0.9900C40—C411.378 (8)
C11—H11B0.9900C40—H400.9500
C12—H12A0.9800C41—H410.9500
C12—H12B0.9800
C1—Sn1—C5174.37 (18)C12—C11—H11B108.9
C1—Sn1—O2i95.48 (16)C10—C11—H11B108.9
C5—Sn1—O2i88.55 (16)H11A—C11—H11B107.7
C1—Sn1—O11ii92.86 (15)C11—C12—H12A109.5
C5—Sn1—O11ii90.93 (16)C11—C12—H12B109.5
O2i—Sn1—O11ii91.82 (12)H12A—C12—H12B109.5
C1—Sn1—O185.51 (15)C11—C12—H12C109.5
C5—Sn1—O190.44 (15)H12A—C12—H12C109.5
O2i—Sn1—O191.96 (12)H12B—C12—H12C109.5
O11ii—Sn1—O1176.01 (12)C14—C13—Sn2123.2 (8)
C1—Sn1—O489.40 (16)C14A—C13—Sn2118.2 (7)
C5—Sn1—O486.40 (16)C14—C13—H13A106.5
O2i—Sn1—O4174.42 (12)C14A—C13—H13A83.6
O11ii—Sn1—O490.65 (12)Sn2—C13—H13A106.5
O1—Sn1—O485.70 (11)C14—C13—H13B106.5
C13—Sn2—C9171.5 (2)C14A—C13—H13B129.2
C13—Sn2—O790.09 (17)Sn2—C13—H13B106.5
C9—Sn2—O796.29 (16)H13A—C13—H13B106.5
C13—Sn2—O592.65 (17)C14—C13—H13C123.3
C9—Sn2—O592.77 (16)C14A—C13—H13C107.8
O7—Sn2—O591.74 (12)Sn2—C13—H13C107.8
C13—Sn2—O8iii88.59 (16)H13B—C13—H13C78.2
C9—Sn2—O8iii85.65 (15)C14—C13—H13D80.8
O7—Sn2—O8iii91.44 (12)C14A—C13—H13D107.8
O5—Sn2—O8iii176.59 (12)Sn2—C13—H13D107.8
C13—Sn2—O1085.28 (17)H13A—C13—H13D132.2
C9—Sn2—O1088.24 (16)H13C—C13—H13D107.1
O7—Sn2—O10175.30 (12)C13—C14—C15118.2 (15)
O5—Sn2—O1089.30 (12)C13—C14—H14A107.8
O8iii—Sn2—O1087.63 (11)C15—C14—H14A107.8
O1—P1—O2113.49 (18)C13—C14—H14B107.8
O1—P1—O3105.59 (18)C15—C14—H14B107.8
O2—P1—O3113.04 (19)H14A—C14—H14B107.1
O1—P1—C23109.6 (2)C14—C15—C16117.4 (16)
O2—P1—C23107.0 (2)C14—C15—H15A108.0
O3—P1—C23107.9 (2)C16—C15—H15A108.0
O5—P2—O4115.01 (18)C14—C15—H15B108.0
O5—P2—O6106.31 (19)C16—C15—H15B108.0
O4—P2—O6110.19 (19)H15A—C15—H15B107.2
O5—P2—C24108.7 (2)C15A—C14A—C13115.1 (12)
O4—P2—C24109.3 (2)C15A—C14A—H14C108.5
O6—P2—C24106.9 (2)C13—C14A—H14C108.5
O7—P3—O8113.94 (19)C15A—C14A—H14D108.5
O7—P3—O9112.23 (19)C13—C14A—H14D108.5
O8—P3—O9105.37 (19)H14C—C14A—H14D107.5
O7—P3—C30107.3 (2)C16A—C15A—C14A115.1 (13)
O8—P3—C30109.8 (2)C16A—C15A—H15C108.5
O9—P3—C30108.1 (2)C14A—C15A—H15C108.5
O11—P4—O10115.26 (18)C16A—C15A—H15D108.5
O11—P4—O12106.10 (19)C14A—C15A—H15D108.5
O10—P4—O12110.47 (19)H15C—C15A—H15D107.5
O11—P4—C36108.9 (2)C15A—C16A—H16D109.5
O10—P4—C36108.9 (2)C15A—C16A—H16E109.5
O12—P4—C36106.9 (2)H16D—C16A—H16E109.5
P1—O1—Sn1131.87 (18)C15A—C16A—H16F109.5
P1—O2—Sn1i145.6 (2)H16D—C16A—H16F109.5
P1—O3—H3111 (5)H16E—C16A—H16F109.5
P2—O4—Sn1131.42 (18)C19—C18—C23119.2 (5)
P2—O5—Sn2151.1 (2)C19—C18—H18120.4
P2—O6—H6105 (4)C23—C18—H18120.4
P3—O7—Sn2141.8 (2)C18—C19—C20120.7 (6)
P3—O8—Sn2iii133.47 (19)C18—C19—H19119.6
P3—O9—H9123 (4)C20—C19—H19119.6
P4—O10—Sn2130.14 (19)C21—C20—C19120.0 (6)
P4—O11—Sn1iv151.1 (2)C21—C20—H20120.0
P4—O12—H12117 (4)C19—C20—H20120.0
C2—C1—Sn1118.2 (3)C20—C21—C22120.3 (6)
C2—C1—H1A107.8C20—C21—H21119.8
Sn1—C1—H1A107.8C22—C21—H21119.8
C2—C1—H1B107.8C21—C22—C23120.3 (5)
Sn1—C1—H1B107.8C21—C22—H22119.8
H1A—C1—H1B107.1C23—C22—H22119.8
C1—C2—C3113.3 (4)C22—C23—C18119.4 (5)
C1—C2—H2A108.9C22—C23—P1120.3 (4)
C3—C2—H2A108.9C18—C23—P1120.2 (4)
C1—C2—H2B108.9C25—C24—C29119.5 (5)
C3—C2—H2B108.9C25—C24—P2120.6 (4)
H2A—C2—H2B107.7C29—C24—P2119.7 (4)
C4—C3—C2112.6 (5)C26—C25—C24119.6 (5)
C4—C3—H3A109.1C26—C25—H25120.2
C2—C3—H3A109.1C24—C25—H25120.2
C4—C3—H3B109.1C27—C26—C25120.4 (6)
C2—C3—H3B109.1C27—C26—H26119.8
H3A—C3—H3B107.8C25—C26—H26119.8
C3—C4—H4A109.5C26—C27—C28119.8 (6)
C3—C4—H4B109.5C26—C27—H27120.1
H4A—C4—H4B109.5C28—C27—H27120.1
C3—C4—H4C109.5C29—C28—C27121.0 (6)
H4A—C4—H4C109.5C29—C28—H28119.5
H4B—C4—H4C109.5C27—C28—H28119.5
C6—C5—Sn1117.8 (3)C28—C29—C24119.7 (6)
C6—C5—H5A107.9C28—C29—H29120.1
Sn1—C5—H5A107.9C24—C29—H29120.2
C6—C5—H5B107.9C31—C30—C35119.2 (5)
Sn1—C5—H5B107.9C31—C30—P3122.1 (4)
H5A—C5—H5B107.2C35—C30—P3118.6 (4)
C7—C6—C5112.4 (5)C30—C31—C32120.4 (6)
C7—C6—H6A109.1C30—C31—H31119.8
C5—C6—H6A109.1C32—C31—H31119.8
C7—C6—H6B109.1C33—C32—C31119.7 (6)
C5—C6—H6B109.1C33—C32—H32120.2
H6A—C6—H6B107.9C31—C32—H32120.2
C8—C7—C6115.0 (5)C34—C33—C32120.4 (6)
C8—C7—H7A108.5C34—C33—H33119.8
C6—C7—H7A108.5C32—C33—H33119.8
C8—C7—H7B108.5C33—C34—C35120.6 (6)
C6—C7—H7B108.5C33—C34—H34119.7
H7A—C7—H7B107.5C35—C34—H34119.7
C7—C8—H8A109.5C34—C35—C30119.7 (6)
C7—C8—H8B109.5C34—C35—H35120.2
H8A—C8—H8B109.5C30—C35—H35120.2
C7—C8—H8C109.5C37—C36—C41119.5 (5)
H8A—C8—H8C109.5C37—C36—P4121.2 (4)
H8B—C8—H8C109.5C41—C36—P4119.2 (4)
C10—C9—Sn2117.3 (3)C38—C37—C36119.7 (5)
C10—C9—H9A108.0C38—C37—H37120.1
Sn2—C9—H9A108.0C36—C37—H37120.1
C10—C9—H9B108.0C39—C38—C37120.4 (6)
Sn2—C9—H9B108.0C39—C38—H38119.8
H9A—C9—H9B107.2C37—C38—H38119.8
C9—C10—C11112.7 (5)C38—C39—C40120.0 (6)
C9—C10—H10A109.0C38—C39—H39120.0
C11—C10—H10A109.0C40—C39—H39120.0
C9—C10—H10B109.0C41—C40—C39120.3 (6)
C11—C10—H10B109.0C41—C40—H40119.9
H10A—C10—H10B107.8C39—C40—H40119.9
C12—C11—C10113.3 (7)C40—C41—C36119.9 (6)
C12—C11—H11A108.9C40—C41—H41120.0
C10—C11—H11A108.9C36—C41—H41120.0
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10v0.87 (2)1.80 (1)2.656 (5)172 (6)
O6—H6···O10.86 (2)1.77 (1)2.628 (5)172 (6)
O9—H9···O40.87 (2)1.83 (2)2.662 (5)159 (6)
O12—H12···O8iii0.88 (2)1.78 (2)2.633 (5)168 (6)
Symmetry codes: (iii) x+2, y, z+1; (v) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Sn2(C4H9)4(C6H6PO3)4]
Mr1094.14
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)11.0258 (3), 13.8500 (4), 16.0177 (4)
α, β, γ (°)74.074 (1), 89.742 (1), 77.291 (1)
V3)2290.44 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.699, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
35391, 10394, 8145
Rint0.060
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.05
No. of reflections10394
No. of parameters570
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.73, 1.93

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10i0.87 (2)1.797 (14)2.656 (5)172 (6)
O6—H6···O10.86 (2)1.770 (14)2.628 (5)172 (6)
O9—H9···O40.87 (2)1.83 (2)2.662 (5)159 (6)
O12—H12···O8ii0.88 (2)1.777 (17)2.633 (5)168 (6)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationBoye, M. S. & Diassé-Sarr, A. (2007). C. R. Chim. 10, 489–492.
First citationDiassé-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223–229.
First citationDiop, T., Diop, L., Diop, C. A. K., Molloy, K. C. & Kociok-Köhn, G. (2011). Acta Cryst. E67, m1872–m1873.  Web of Science CSD CrossRef IUCr Journals
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, 16. Amsterdam: Elsevier.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationHadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 235–249.  Web of Science CrossRef CAS
First citationHolmes, R. R., Swamy, K. C. K., Schmid, C. G. & Day, R. O. (1988). J. Am. Chem. Soc. 110, 7060–7066.  CSD CrossRef CAS Web of Science
First citationMolloy, K. C., Hossain, M. B., Van der Helm, D., Cunningham, D. & Zuckerman, J. J. (1981). Inorg. Chem. 20, 2402–2407.  CSD CrossRef CAS Web of Science
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSall, A. S., Sarr, O. & Diop, L. (1992). Bull. Chem. Soc. Ethiop. 6, 11–14.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds