supplementary materials


bh2454 scheme

Acta Cryst. (2012). E68, m1395    [ doi:10.1107/S1600536812043206 ]

catena-Poly[[[diaquacopper(II)]-[mu]-quinoline-2,3-dicarboxylato-[kappa]3N,O2:O3] monohydrate]

Q.-H. Xia, Z.-F. Guo, L. Liu, Z. Wang and B. Li

Abstract top

In the title compound, {[Cu(C11H5NO4)(H2O)2]·H2O}n, the CuII ion is five-coordinated by two O atoms and one N atom of two symmetry-related quinoline-2,3-dicarboxylate ligands, and two water molecules. The water molecules occupy basal and apical positions of the square-pyramidal coordination polyhedron. Each quinoline-2,3-dicarboxylate dianion bridges two adjacent CuII ions, forming a polymeric chain along [010]. The chains are further connected via O-H...O hydrogen-bonding interactions and quinoline ring [pi]-[pi] interactions [centroid-centroid distance = 3.725 (4) Å], generating a three-dimensional structure. Lattice water molecules participate in the crystal structure via O-H...O hydrogen bonds.

Comment top

The asymmetric unit of the title complex contains one CuII ion, one quinoline-2,3-dicarboxylate dianion, two coordinated water molecules and one lattice water molecule (Fig. 1). The CuII ion is five-coordinated within a square-pyramidal [CuNO4]coordination geometry. Five coordination arises from two O atoms and one N atom belonging to two 2,3-quinolinedicarboxylate ligands (Li & Liu, 2010), and two water molecules. The Cu—O bond lengths vary from 1.9403 (19) to 2.320 (3) Å, and the Cu—N distance is 2.096 (2) Å. Each CuII ion interacts with adjacent CuII via the bridging mode of the dianion, forming a one-dimensional framework. The resulting chains are further connected through O—H···O hydrogen bonding interactions between the O atoms of quinoline-2,3-dicarboxylate dianion, coordinated water molecules and one lattice water molecule [O···O separations in the range 2.775 (4)–3.174 (3) Å]. Additionally, ππ [3.725 (4) Å] interactions between quinoline rings are involved in the formation of the three-dimensional supramolecular structure (Fig. 2). The shortest Cu···Cu separation along the polymeric chain is 7.5836 (2) Å.

Related literature top

For background to complexes based on 2,3-quinolinedicarboxylic acid, see: Li & Liu (2010).

Experimental top

All commercially obtained reagent grade chemicals were used without further purification. A mixture of copper chloride dihydrate (0.1708 g, 1 mmol) and 2,3-quinolinedicarboxylic acid (0.2171 g, 1 mmol) was added into 20 ml of water with few drops of ammonia solution, and then stirred for 1 h. After 2 days, blue crystals of the title complex were collected by filtration, washed with distilled water, and dried in air.

Refinement top

All H atoms bonded to C atoms were positioned geometrically and refined using the riding model with C—H = 0.93 Å. The H atoms of water molecules were located from a difference map and were restrained at distances O—H = 0.83 (1) Å. The separation between H atoms in the same water molecule was restrained to H···H = 1.35 (1) Å. Cu and OW2 atoms were restrained to have similar displacement parameters (SIMU restraint; Sheldrick, 2008). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier C) and Uiso(H) = 1.5Ueq(carrier O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with 50% probability displacement ellipsoids for non-H atoms. Symmetry codes: (A) x, -1 + y, z; (B) x, -2 + y, z.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. All atoms are shown as isotropic spheres of arbitrary size. H atoms bonded to C atoms are omitted for clarity. The H-bonding interactions are shown as red dashed lines.
catena-Poly[[[diaquacopper(II)]-µ-quinoline-2,3-dicarboxylato- κ3N,O2:O3] monohydrate] top
Crystal data top
[Cu(C11H5NO4)(H2O)2]·H2OZ = 2
Mr = 332.76F(000) = 338
Triclinic, P1Dx = 1.818 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0284 (14) ÅCell parameters from 5355 reflections
b = 7.5836 (15) Åθ = 3.1–27.5°
c = 13.276 (3) ŵ = 1.83 mm1
α = 104.74 (3)°T = 293 K
β = 91.19 (3)°Block, blue
γ = 116.03 (3)°0.43 × 0.34 × 0.20 mm
V = 607.7 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2696 independent reflections
Radiation source: fine-focus sealed tube2382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.763, Tmax = 0.854k = 98
5813 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4308P]
where P = (Fo2 + 2Fc2)/3
2696 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.73 e Å3
10 restraintsΔρmin = 0.74 e Å3
0 constraints
Crystal data top
[Cu(C11H5NO4)(H2O)2]·H2Oγ = 116.03 (3)°
Mr = 332.76V = 607.7 (2) Å3
Triclinic, P1Z = 2
a = 7.0284 (14) ÅMo Kα radiation
b = 7.5836 (15) ŵ = 1.83 mm1
c = 13.276 (3) ÅT = 293 K
α = 104.74 (3)°0.43 × 0.34 × 0.20 mm
β = 91.19 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2696 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2382 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.854Rint = 0.048
5813 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Δρmax = 0.73 e Å3
S = 1.10Δρmin = 0.74 e Å3
2696 reflectionsAbsolute structure: ?
199 parametersFlack parameter: ?
10 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.30340 (5)0.43833 (4)0.17117 (2)0.02367 (13)
O10.2017 (5)0.8429 (3)0.07483 (18)0.0454 (6)
O20.3062 (4)0.6111 (3)0.08503 (16)0.0323 (5)
O30.0584 (3)1.0076 (3)0.20096 (18)0.0351 (5)
O40.2863 (3)1.2456 (3)0.24768 (16)0.0279 (4)
OW10.6719 (4)0.5956 (4)0.2208 (2)0.0448 (6)
H10.723 (7)0.518 (5)0.198 (4)0.067*
H20.733 (7)0.701 (4)0.205 (4)0.067*
OW20.2962 (5)0.2398 (4)0.0373 (2)0.0465 (6)
H30.292 (7)0.126 (5)0.042 (4)0.070*
H40.406 (6)0.284 (6)0.003 (4)0.070*
OW30.1618 (5)0.3035 (4)0.1425 (2)0.0516 (7)
H50.185 (8)0.265 (7)0.0779 (15)0.077*
H60.140 (8)0.226 (6)0.166 (3)0.077*
N0.2639 (3)0.6617 (3)0.28625 (17)0.0193 (4)
C10.1293 (4)1.0719 (4)0.2397 (2)0.0229 (5)
C20.1836 (4)0.9435 (4)0.2947 (2)0.0195 (5)
C30.1917 (4)0.9836 (4)0.4014 (2)0.0216 (5)
H3A0.17061.09300.43960.026*
C40.2314 (4)0.8615 (4)0.4539 (2)0.0208 (5)
C50.2409 (4)0.8966 (4)0.5644 (2)0.0259 (6)
H5A0.22541.00740.60550.031*
C60.2726 (5)0.7685 (5)0.6109 (2)0.0306 (6)
H6A0.27710.79180.68330.037*
C70.2985 (5)0.6019 (5)0.5502 (2)0.0312 (6)
H7A0.31720.51430.58270.037*
C80.2966 (5)0.5668 (4)0.4442 (2)0.0277 (6)
H8A0.31830.45810.40560.033*
C90.2620 (4)0.6941 (4)0.3922 (2)0.0200 (5)
C100.2271 (4)0.7826 (4)0.2399 (2)0.0201 (5)
C110.2456 (5)0.7447 (4)0.1240 (2)0.0255 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0347 (2)0.02115 (19)0.0221 (2)0.01646 (16)0.00703 (14)0.01064 (13)
O10.095 (2)0.0415 (12)0.0239 (12)0.0488 (14)0.0131 (12)0.0165 (9)
O20.0555 (13)0.0351 (11)0.0250 (11)0.0322 (11)0.0176 (10)0.0170 (9)
O30.0349 (11)0.0418 (12)0.0381 (13)0.0222 (10)0.0005 (9)0.0186 (10)
O40.0396 (11)0.0189 (9)0.0266 (11)0.0122 (9)0.0022 (8)0.0112 (8)
OW10.0312 (12)0.0355 (12)0.0668 (19)0.0131 (11)0.0090 (11)0.0173 (12)
OW20.0751 (18)0.0352 (12)0.0353 (12)0.0300 (13)0.0176 (12)0.0108 (8)
OW30.084 (2)0.0524 (15)0.0269 (13)0.0385 (15)0.0068 (13)0.0121 (11)
N0.0243 (10)0.0177 (10)0.0182 (11)0.0109 (9)0.0034 (8)0.0071 (8)
C10.0340 (14)0.0258 (13)0.0168 (13)0.0200 (12)0.0052 (10)0.0071 (10)
C20.0198 (11)0.0191 (11)0.0223 (13)0.0092 (10)0.0029 (9)0.0099 (9)
C30.0235 (12)0.0233 (12)0.0217 (14)0.0138 (11)0.0042 (10)0.0072 (10)
C40.0171 (11)0.0252 (12)0.0224 (14)0.0100 (10)0.0044 (9)0.0100 (10)
C50.0257 (13)0.0348 (14)0.0221 (14)0.0170 (12)0.0064 (10)0.0103 (11)
C60.0302 (14)0.0482 (17)0.0208 (14)0.0203 (14)0.0078 (11)0.0176 (12)
C70.0339 (15)0.0401 (16)0.0292 (16)0.0198 (14)0.0044 (12)0.0202 (13)
C80.0349 (14)0.0287 (13)0.0258 (15)0.0176 (13)0.0025 (11)0.0128 (11)
C90.0213 (11)0.0208 (11)0.0198 (13)0.0098 (10)0.0024 (9)0.0089 (9)
C100.0249 (12)0.0202 (11)0.0182 (13)0.0111 (10)0.0026 (9)0.0090 (9)
C110.0378 (15)0.0224 (12)0.0197 (14)0.0154 (12)0.0053 (11)0.0088 (10)
Geometric parameters (Å, º) top
Cu—O21.9403 (19)C5—C61.365 (4)
Cu—O4i1.9463 (19)C5—H5A0.9300
Cu—OW21.999 (3)C11—C101.511 (4)
Cu—N2.096 (2)C7—C81.362 (4)
Cu—OW12.320 (3)C7—C61.403 (4)
O2—C111.264 (3)C7—H7A0.9300
OW2—H30.872 (18)C10—C21.413 (4)
OW2—H40.888 (18)C6—H6A0.9300
N—C101.332 (3)C8—H8A0.9300
N—C91.367 (3)OW3—H50.820 (19)
OW1—H10.813 (18)OW3—H60.803 (18)
OW1—H20.810 (18)C2—C31.365 (4)
O1—C111.231 (3)C2—C11.517 (3)
C9—C81.416 (3)C3—H3A0.9300
C9—C41.430 (4)C1—O31.234 (4)
C4—C31.403 (4)C1—O41.270 (3)
C4—C51.418 (4)O4—Cuii1.9463 (19)
O2—Cu—O4i175.29 (9)C4—C5—H5A119.8
O2—Cu—OW286.24 (10)O1—C11—O2125.0 (3)
O4i—Cu—OW289.79 (10)O1—C11—C10119.1 (2)
O2—Cu—N81.69 (8)O2—C11—C10115.9 (2)
O4i—Cu—N101.87 (8)C8—C7—C6120.8 (3)
OW2—Cu—N165.40 (10)C8—C7—H7A119.6
O2—Cu—OW195.74 (10)C6—C7—H7A119.6
O4i—Cu—OW187.18 (9)N—C10—C2123.3 (2)
OW2—Cu—OW195.84 (12)N—C10—C11115.7 (2)
N—Cu—OW193.51 (10)C2—C10—C11120.9 (2)
C11—O2—Cu116.02 (17)C5—C6—C7120.5 (3)
Cu—OW2—H3117 (3)C5—C6—H6A119.7
Cu—OW2—H4116 (3)C7—C6—H6A119.7
H3—OW2—H4101 (2)C7—C8—C9120.8 (3)
C10—N—C9119.2 (2)C7—C8—H8A119.6
C10—N—Cu108.84 (17)C9—C8—H8A119.6
C9—N—Cu131.95 (17)H5—OW3—H6112 (3)
Cu—OW1—H1112 (3)C3—C2—C10118.0 (2)
Cu—OW1—H2113 (3)C3—C2—C1119.3 (2)
H1—OW1—H2111 (3)C10—C2—C1122.7 (2)
N—C9—C8120.9 (2)C2—C3—C4120.7 (2)
N—C9—C4120.7 (2)C2—C3—H3A119.6
C8—C9—C4118.4 (2)C4—C3—H3A119.6
C3—C4—C5122.9 (2)O3—C1—O4127.4 (2)
C3—C4—C9118.0 (2)O3—C1—C2118.7 (2)
C5—C4—C9119.1 (2)O4—C1—C2113.6 (2)
C6—C5—C4120.3 (3)C1—O4—Cuii127.31 (19)
C6—C5—H5A119.8
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1···OW3iii0.81 (2)2.11 (2)2.916 (4)177 (4)
OW1—H2···O3iii0.81 (2)2.15 (2)2.944 (3)166 (5)
OW2—H3···O1i0.87 (2)2.12 (2)2.962 (3)163 (4)
OW2—H4···O2iv0.89 (2)2.29 (2)3.174 (3)178 (4)
OW3—H5···O1v0.82 (2)1.96 (2)2.775 (4)170 (5)
OW3—H6···O3i0.80 (2)2.12 (2)2.909 (3)169 (5)
Symmetry codes: (i) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1···OW3i0.813 (18)2.105 (19)2.916 (4)177 (4)
OW1—H2···O3i0.810 (18)2.15 (2)2.944 (3)166 (5)
OW2—H3···O1ii0.872 (18)2.117 (19)2.962 (3)163 (4)
OW2—H4···O2iii0.888 (18)2.287 (19)3.174 (3)178 (4)
OW3—H5···O1iv0.820 (19)1.96 (2)2.775 (4)170 (5)
OW3—H6···O3ii0.803 (18)2.12 (2)2.909 (3)169 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x, y+1, z.
Acknowledgements top

This work was supported by the National Natural Science (No.21207117) and Zhejiang Provincial Municipal Science and Technology Project (2008 C12055).

references
References top

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Li, X. & Liu, G. (2010). Z. Kristallogr. New Cryst. Struct. 225, 761–762.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.