supplementary materials


bh2457 scheme

Acta Cryst. (2012). E68, m1400-m1401    [ doi:10.1107/S1600536812043073 ]

catena-Poly[[chlorido[1-(3-nitrophenyl)-2-(triphenylphosphoranylidene)ethanone-[kappa]C2]mercury(II)]-[mu]-chlorido]

A. Dadrass, J. Khalafy, H. Rahchamani, H. Nasri Koureh and H. Yaghoobnejad Asl

Abstract top

In the title organometallic polymer, [HgCl2(C26H20NO3P)]n, the monodentate 1-(3-nitrophenyl)-2-(triphenylphosphoranylidene)ethanone ligand is coordinated to the HgII atom through the methine C atom. The HgII atom is four-coordinated in a distorted tetrahedral geometry by one terminal Cl atom, two bridging Cl atoms, and one C atom from the ylidic ligand, resulting in a polymeric chain parallel to [010]. The terminal Cl atom is more strongly bound to the HgII ion [2.3916 (9) Å] than the bridging Cl atoms. The bridge is asymmetric, as indicated by the two different Hg-Cl(bridging) bond lengths [2.5840 (8) and 2.7876 (8) Å]. Intramolecular C-H...O and weak C-H...Cl contacts stabilize the polymeric chain. In the crystal, adjacent chains interact via C-H...O hydrogen bonds.

Comment top

The coordination chemistry of ambidentate ligands (L) has been investigated. The preparation and characterization of stabilized phosphorus ylides, and metal complexes incorporating this type of ylides, has attracted much attention in recent years (Ebrahim et al., 2007). Although many bonding modes are possible for keto-ylides, coordination through ylides methine carbon is more predominant and observed with soft metal ions, e.g. Pd(II), Pt(II), HgII and Au(I), whereas O-coordination dominates when the metals involved are hard, e.g. Ti(IV), Zr(IV), and Hf(IV). The crystal and molecular structure of the title complex reveals a polymeric structure, with HgII ions linked by bridging chlorine, participating in a very asymmetric linear bridge. The asymmetric ligand plays an important role in the building of this unusual supramolecular structure. The building unit (Fig. 1) is repeated in the polymeric crystal structure. The polymeric structure (part of the chain) and packing diagram for the complex are shown in Fig. 2 and Fig. 3, respectively. The X-ray analysis reveals the coordination of the ylide ligand through the methine C atom only. The HgII atom is located in a distorted tetrahedral environment, with one terminal Cl- and two bridging Cl- ions, and one C atom from the ligand, resulting in a one-dimensional polymeric chain. The bond angles around HgII ion indicate a severe distortion from ideal tetrahedral geometry. The Hg—Cl(terminal) bond length, 2.3916 (9) Å, is shorter than Hg—Cl(bridging) distances. The asymmetric bridging nature of the two chloro ligands is reflected in the unequal Hg—Cl distances of 2.5840 (8) and 2.7876 (8) Å. The latter distance being rather long, indicates a weak Hg—Cl(bridging) interaction. The Hg—C bond length in the title compound, 2.244 (3) Å, is consistent with values reported for mono ([HgI2(bbtppy)(DMSO)]) and dimeric ([(bappy)HgI2]2) HgII—C complexes (Sabounchei et al., 2007, 2008, 2009, 2011; Sabounchei, Jodaian et al., 2010; Sabounchei, Samiee et al., 2010). In the crystal structure, adjacent polymer chains interact via C—H···O hydrogen bonds. Intramolecular C—H···O and weak C—H···Cl hydrogen bonds stabilize the polymeric chains.

Related literature top

For an example of a one-dimensional polymeric HgII complex, see: Ebrahim et al. (2007). For mono and dimeric complexes of HgII containing ylide ligands, see: Sabounchei et al. (2007, 2008, 2009, 2011); Sabounchei, Jodaian et al. (2010); Sabounchei, Samiee et al. (2010).

Experimental top

All reagents and solvents employed were commercially available and were used as received without further purification. The ligand 1-(3-nitrophenyl)-2-(triphenylphosphoranylidene)ethanone (0.637 g, 1.5 mmol) in methanol (10 ml) was added dropwise to HgCl2 (0.407 g, 1.5 mmol) in the same solvent (10 ml). After standing for 15 h without stirring at room temperature, colourless crystals of the title complex were obtained. Yield: 62%.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.98 Å (methine) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(carrier C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building unit of the title complex [HgCl2(L)]n. All H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the polymeric chain in the title compound. All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for the title compounds, with chains running parallel to the b axis. All H atoms have been omitted for clarity.
[Figure 4] Fig. 4. Resonance forms of the phosphorus ylide(ligand) and its coordination with mercury ion.
catena-Poly[[chlorido[1-(3-nitrophenyl)-2- (triphenylphosphoranylidene)ethanone-κC2]mercury(II)]-µ-chlorido] top
Crystal data top
[HgCl2(C26H20NO3P)]F(000) = 1344
Mr = 696.89Dx = 1.864 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1017 reflections
a = 12.589 (3) Åθ = 3.0–27.4°
b = 8.1026 (17) ŵ = 6.51 mm1
c = 25.231 (6) ÅT = 293 K
β = 105.174 (2)°Prism, colourless
V = 2483.8 (9) Å30.61 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6143 independent reflections
Radiation source: fine-focus sealed tube5049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.109, Tmax = 0.499k = 1010
29804 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.034P)2 + 0.6725P]
where P = (Fo2 + 2Fc2)/3
6143 reflections(Δ/σ)max = 0.002
307 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.45 e Å3
0 constraints
Crystal data top
[HgCl2(C26H20NO3P)]V = 2483.8 (9) Å3
Mr = 696.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.589 (3) ŵ = 6.51 mm1
b = 8.1026 (17) ÅT = 293 K
c = 25.231 (6) Å0.61 × 0.15 × 0.12 mm
β = 105.174 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6143 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5049 reflections with I > 2σ(I)
Tmin = 0.109, Tmax = 0.499Rint = 0.034
29804 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.96 e Å3
S = 1.03Δρmin = 0.45 e Å3
6143 reflectionsAbsolute structure: ?
307 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.394304 (9)0.004646 (12)0.767518 (5)0.04050 (5)
Cl10.48115 (6)0.31360 (8)0.77525 (3)0.04764 (18)
Cl20.22022 (7)0.03302 (11)0.70223 (4)0.0586 (2)
P10.33345 (5)0.13556 (8)0.87895 (3)0.02688 (13)
C10.6575 (2)0.0932 (3)0.87894 (10)0.0329 (6)
C20.7437 (2)0.2055 (4)0.89500 (11)0.0382 (6)
H2A0.72950.31740.89770.046*
C30.8496 (2)0.1491 (5)0.90675 (12)0.0481 (8)
C40.8745 (3)0.0152 (5)0.90283 (18)0.0634 (11)
H4A0.94730.05020.91080.076*
C50.7897 (3)0.1265 (5)0.88698 (16)0.0644 (10)
H5A0.80500.23790.88410.077*
C60.6810 (2)0.0729 (4)0.87524 (13)0.0474 (7)
H6A0.62390.14870.86490.057*
C70.54244 (19)0.1632 (3)0.86703 (10)0.0289 (5)
N10.9400 (2)0.2703 (5)0.92431 (12)0.0708 (10)
O10.9181 (2)0.4070 (5)0.93769 (13)0.0896 (9)
O21.0322 (2)0.2238 (5)0.92538 (17)0.1280 (14)
O30.53055 (15)0.3129 (2)0.86724 (8)0.0414 (4)
C80.4477 (2)0.0510 (3)0.85832 (11)0.0306 (5)
H8A0.47050.05310.87770.037*
C90.24626 (19)0.2639 (3)0.82721 (10)0.0293 (5)
C100.2909 (2)0.3735 (3)0.79627 (11)0.0387 (6)
H10A0.36680.38640.80390.046*
C110.2228 (3)0.4628 (4)0.75433 (14)0.0481 (8)
H11A0.25300.53470.73350.058*
C120.1103 (3)0.4461 (5)0.74316 (14)0.0510 (8)
H12A0.06480.50480.71430.061*
C130.0650 (2)0.3422 (4)0.77476 (13)0.0502 (8)
H13A0.01110.33400.76780.060*
C140.1319 (2)0.2502 (4)0.81666 (12)0.0406 (6)
H14A0.10100.17980.83760.049*
C150.2511 (2)0.0368 (3)0.89107 (11)0.0301 (5)
C160.2028 (3)0.1434 (4)0.84876 (12)0.0525 (8)
H16A0.21270.12690.81390.063*
C170.1398 (3)0.2744 (4)0.85828 (14)0.0594 (9)
H17A0.10820.34610.82970.071*
C180.1233 (2)0.2999 (4)0.90891 (13)0.0476 (7)
H18A0.08060.38800.91500.057*
C190.1707 (3)0.1941 (4)0.95080 (13)0.0527 (8)
H19A0.15960.21070.98540.063*
C200.2344 (2)0.0633 (4)0.94231 (12)0.0428 (6)
H20A0.26610.00720.97120.051*
C210.37502 (19)0.2448 (3)0.94318 (10)0.0307 (5)
C220.2989 (2)0.3465 (3)0.95842 (12)0.0449 (7)
H22A0.23150.36840.93370.054*
C230.3237 (3)0.4147 (4)1.01033 (13)0.0549 (8)
H23A0.27190.48031.02060.066*
C240.4236 (3)0.3871 (4)1.04692 (12)0.0501 (8)
H24A0.43980.43471.08170.060*
C250.4997 (3)0.2890 (4)1.03198 (11)0.0438 (7)
H25A0.56800.27151.05660.053*
C260.4759 (2)0.2155 (3)0.98068 (12)0.0358 (6)
H26A0.52730.14670.97130.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.04069 (8)0.04342 (8)0.03615 (8)0.00409 (4)0.00785 (5)0.00748 (4)
Cl10.0525 (4)0.0346 (3)0.0604 (5)0.0059 (3)0.0229 (4)0.0059 (3)
Cl20.0417 (4)0.0791 (6)0.0487 (5)0.0070 (4)0.0004 (4)0.0165 (4)
P10.0237 (3)0.0288 (3)0.0275 (3)0.0013 (2)0.0054 (2)0.0014 (2)
C10.0253 (12)0.0462 (15)0.0272 (13)0.0017 (11)0.0069 (10)0.0012 (11)
C20.0293 (13)0.0553 (17)0.0315 (14)0.0073 (12)0.0108 (11)0.0036 (12)
C30.0293 (15)0.082 (2)0.0348 (16)0.0070 (15)0.0119 (12)0.0037 (15)
C40.0338 (18)0.095 (3)0.061 (2)0.0151 (17)0.0117 (17)0.0031 (18)
C50.046 (2)0.068 (2)0.077 (3)0.0197 (18)0.0127 (18)0.0060 (19)
C60.0343 (16)0.0497 (18)0.056 (2)0.0063 (13)0.0084 (14)0.0019 (15)
C70.0246 (12)0.0341 (13)0.0283 (12)0.0001 (10)0.0076 (10)0.0031 (10)
N10.0300 (15)0.130 (3)0.0531 (18)0.0224 (18)0.0115 (13)0.0100 (19)
O10.0589 (18)0.114 (3)0.094 (2)0.0417 (19)0.0161 (15)0.026 (2)
O20.0335 (15)0.190 (4)0.165 (3)0.0242 (19)0.0340 (18)0.030 (3)
O30.0337 (10)0.0352 (10)0.0523 (12)0.0018 (8)0.0060 (9)0.0041 (9)
C80.0257 (12)0.0305 (11)0.0341 (14)0.0010 (10)0.0053 (10)0.0003 (11)
C90.0278 (12)0.0310 (12)0.0277 (12)0.0008 (10)0.0047 (10)0.0025 (10)
C100.0317 (14)0.0430 (15)0.0408 (15)0.0027 (11)0.0086 (11)0.0073 (12)
C110.053 (2)0.0488 (17)0.0434 (18)0.0089 (14)0.0141 (15)0.0111 (14)
C120.0468 (19)0.0555 (17)0.0416 (17)0.0169 (15)0.0043 (14)0.0077 (15)
C130.0282 (14)0.0584 (19)0.0552 (19)0.0045 (13)0.0045 (13)0.0003 (15)
C140.0278 (13)0.0440 (15)0.0476 (17)0.0006 (11)0.0057 (12)0.0014 (13)
C150.0272 (13)0.0322 (12)0.0307 (14)0.0001 (10)0.0074 (11)0.0013 (10)
C160.071 (2)0.0544 (18)0.0366 (16)0.0258 (16)0.0225 (15)0.0101 (14)
C170.073 (2)0.0522 (19)0.058 (2)0.0321 (17)0.0262 (18)0.0163 (16)
C180.0460 (17)0.0375 (15)0.065 (2)0.0062 (13)0.0236 (15)0.0048 (14)
C190.063 (2)0.0566 (19)0.0454 (18)0.0115 (16)0.0258 (16)0.0068 (15)
C200.0475 (17)0.0475 (16)0.0347 (15)0.0081 (14)0.0130 (13)0.0026 (13)
C210.0286 (12)0.0320 (12)0.0313 (13)0.0033 (10)0.0075 (10)0.0024 (10)
C220.0412 (16)0.0441 (16)0.0461 (17)0.0063 (13)0.0058 (13)0.0101 (13)
C230.070 (2)0.0463 (18)0.051 (2)0.0108 (16)0.0193 (17)0.0132 (15)
C240.077 (2)0.0396 (16)0.0308 (15)0.0081 (15)0.0081 (15)0.0078 (12)
C250.0507 (17)0.0447 (16)0.0293 (15)0.0093 (13)0.0016 (13)0.0037 (12)
C260.0350 (14)0.0375 (14)0.0326 (13)0.0003 (11)0.0045 (11)0.0016 (12)
Geometric parameters (Å, º) top
Hg1—C82.244 (3)C11—C121.375 (5)
Hg1—Cl22.3916 (9)C11—H11A0.9300
Hg1—Cl1i2.5840 (8)C12—C131.381 (5)
Hg1—Cl12.7876 (8)C12—H12A0.9300
P1—C81.789 (3)C13—C141.384 (4)
P1—C211.800 (3)C13—H13A0.9300
P1—C91.800 (2)C14—H14A0.9300
P1—C151.812 (3)C15—C201.380 (4)
C1—C61.386 (5)C15—C161.384 (4)
C1—C21.393 (4)C16—C171.383 (4)
C1—C71.511 (3)C16—H16A0.9300
C2—C31.366 (4)C17—C181.362 (4)
C2—H2A0.9300C17—H17A0.9300
C3—C41.377 (5)C18—C191.370 (4)
C3—N11.480 (4)C18—H18A0.9300
C4—C51.374 (5)C19—C201.379 (4)
C4—H4A0.9300C19—H19A0.9300
C5—C61.392 (4)C20—H20A0.9300
C5—H5A0.9300C21—C261.391 (4)
C6—H6A0.9300C21—C221.392 (4)
C7—O31.222 (3)C22—C231.380 (4)
C7—C81.470 (3)C22—H22A0.9300
N1—O11.211 (4)C23—C241.370 (5)
N1—O21.214 (4)C23—H23A0.9300
C8—H8A0.9800C24—C251.371 (4)
C9—C101.394 (4)C24—H24A0.9300
C9—C141.398 (3)C25—C261.384 (4)
C10—C111.380 (4)C25—H25A0.9300
C10—H10A0.9300C26—H26A0.9300
C8—Hg1—Cl2134.44 (7)C12—C11—C10120.3 (3)
C8—Hg1—Cl1i106.18 (7)C12—C11—H11A119.8
Cl2—Hg1—Cl1i109.38 (3)C10—C11—H11A119.8
C8—Hg1—Cl194.37 (7)C11—C12—C13120.0 (3)
Cl2—Hg1—Cl1101.66 (3)C11—C12—H12A120.0
Cl1i—Hg1—Cl1106.661 (16)C13—C12—H12A120.0
Hg1ii—Cl1—Hg1140.15 (3)C12—C13—C14120.6 (3)
C8—P1—C21112.58 (12)C12—C13—H13A119.7
C8—P1—C9113.21 (12)C14—C13—H13A119.7
C21—P1—C9110.32 (12)C13—C14—C9119.5 (3)
C8—P1—C15107.04 (12)C13—C14—H14A120.2
C21—P1—C15105.74 (12)C9—C14—H14A120.2
C9—P1—C15107.48 (12)C20—C15—C16118.8 (3)
C6—C1—C2119.3 (2)C20—C15—P1120.8 (2)
C6—C1—C7124.2 (2)C16—C15—P1120.4 (2)
C2—C1—C7116.5 (2)C17—C16—C15120.1 (3)
C3—C2—C1119.1 (3)C17—C16—H16A120.0
C3—C2—H2A120.5C15—C16—H16A120.0
C1—C2—H2A120.5C18—C17—C16120.9 (3)
C2—C3—C4122.4 (3)C18—C17—H17A119.5
C2—C3—N1118.2 (3)C16—C17—H17A119.5
C4—C3—N1119.4 (3)C17—C18—C19119.1 (3)
C5—C4—C3118.8 (3)C17—C18—H18A120.4
C5—C4—H4A120.6C19—C18—H18A120.4
C3—C4—H4A120.6C18—C19—C20120.9 (3)
C4—C5—C6120.1 (3)C18—C19—H19A119.5
C4—C5—H5A119.9C20—C19—H19A119.5
C6—C5—H5A119.9C19—C20—C15120.2 (3)
C1—C6—C5120.3 (3)C19—C20—H20A119.9
C1—C6—H6A119.9C15—C20—H20A119.9
C5—C6—H6A119.9C26—C21—C22119.0 (2)
O3—C7—C8121.3 (2)C26—C21—P1121.8 (2)
O3—C7—C1118.9 (2)C22—C21—P1118.75 (19)
C8—C7—C1119.7 (2)C23—C22—C21119.9 (3)
O1—N1—O2124.3 (4)C23—C22—H22A120.1
O1—N1—C3118.5 (3)C21—C22—H22A120.1
O2—N1—C3117.2 (4)C24—C23—C22121.0 (3)
C7—C8—P1113.71 (18)C24—C23—H23A119.5
C7—C8—Hg1105.71 (17)C22—C23—H23A119.5
P1—C8—Hg1108.21 (12)C23—C24—C25119.6 (3)
C7—C8—H8A109.7C23—C24—H24A120.2
P1—C8—H8A109.7C25—C24—H24A120.2
Hg1—C8—H8A109.7C24—C25—C26120.7 (3)
C10—C9—C14119.3 (2)C24—C25—H25A119.6
C10—C9—P1121.04 (19)C26—C25—H25A119.6
C14—C9—P1119.6 (2)C25—C26—C21119.8 (3)
C11—C10—C9120.2 (3)C25—C26—H26A120.1
C11—C10—H10A119.9C21—C26—H26A120.1
C9—C10—H10A119.9
C8—Hg1—Cl1—Hg1ii130.02 (8)C8—P1—C9—C14137.1 (2)
Cl2—Hg1—Cl1—Hg1ii92.86 (5)C21—P1—C9—C1495.7 (2)
Cl1i—Hg1—Cl1—Hg1ii21.69 (4)C15—P1—C9—C1419.1 (2)
C6—C1—C2—C30.0 (4)C14—C9—C10—C112.4 (4)
C7—C1—C2—C3179.5 (2)P1—C9—C10—C11175.7 (2)
C1—C2—C3—C40.6 (4)C9—C10—C11—C120.8 (5)
C1—C2—C3—N1179.4 (3)C10—C11—C12—C131.4 (5)
C2—C3—C4—C50.6 (6)C11—C12—C13—C142.1 (5)
N1—C3—C4—C5179.4 (3)C12—C13—C14—C90.5 (5)
C3—C4—C5—C60.1 (6)C10—C9—C14—C131.7 (4)
C2—C1—C6—C50.6 (4)P1—C9—C14—C13176.4 (2)
C7—C1—C6—C5180.0 (3)C8—P1—C15—C20118.7 (2)
C4—C5—C6—C10.6 (5)C21—P1—C15—C201.6 (3)
C6—C1—C7—O3174.2 (2)C9—P1—C15—C20119.4 (2)
C2—C1—C7—O36.3 (4)C8—P1—C15—C1662.0 (3)
C6—C1—C7—C89.0 (4)C21—P1—C15—C16177.8 (2)
C2—C1—C7—C8170.5 (2)C9—P1—C15—C1659.9 (3)
C2—C3—N1—O113.9 (5)C20—C15—C16—C170.5 (5)
C4—C3—N1—O1166.0 (4)P1—C15—C16—C17179.8 (3)
C2—C3—N1—O2167.6 (3)C15—C16—C17—C180.6 (5)
C4—C3—N1—O212.4 (5)C16—C17—C18—C190.3 (5)
O3—C7—C8—P126.8 (3)C17—C18—C19—C200.1 (5)
C1—C7—C8—P1149.97 (19)C18—C19—C20—C150.2 (5)
O3—C7—C8—Hg191.8 (2)C16—C15—C20—C190.1 (4)
C1—C7—C8—Hg191.5 (2)P1—C15—C20—C19179.4 (2)
C21—P1—C8—C742.2 (2)C8—P1—C21—C2621.5 (3)
C9—P1—C8—C783.8 (2)C9—P1—C21—C26149.0 (2)
C15—P1—C8—C7157.94 (19)C15—P1—C21—C2695.0 (2)
C21—P1—C8—Hg1159.28 (11)C8—P1—C21—C22166.2 (2)
C9—P1—C8—Hg133.30 (16)C9—P1—C21—C2238.7 (2)
C15—P1—C8—Hg184.95 (14)C15—P1—C21—C2277.2 (2)
Cl2—Hg1—C8—C7143.68 (13)C26—C21—C22—C230.8 (4)
Cl1i—Hg1—C8—C73.47 (17)P1—C21—C22—C23171.7 (2)
Cl1—Hg1—C8—C7105.29 (15)C21—C22—C23—C241.6 (5)
Cl2—Hg1—C8—P121.53 (18)C22—C23—C24—C250.7 (5)
Cl1i—Hg1—C8—P1118.69 (11)C23—C24—C25—C261.0 (5)
Cl1—Hg1—C8—P1132.55 (11)C24—C25—C26—C211.7 (4)
C8—P1—C9—C1040.9 (3)C22—C21—C26—C250.8 (4)
C21—P1—C9—C1086.2 (2)P1—C21—C26—C25173.1 (2)
C15—P1—C9—C10158.9 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O30.932.333.118 (3)142
C6—H6A···Cl10.932.833.630 (3)145
C24—H24A···O3iii0.932.393.206 (3)146
Symmetry code: (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O30.932.333.118 (3)142.2
C6—H6A···Cl10.932.833.630 (3)145.1
C24—H24A···O3i0.932.393.206 (3)145.7
Symmetry code: (i) x+1, y+1, z+2.
Acknowledgements top

The authors are grateful to Urmia University for financial support and to Dr Amitava Choudhruy (Missouri University of Science and Technology, USA) for his assistance with the X-ray crystallography.

references
References top

Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Ebrahim, M. M., Stoeclki-Evans, H. & Panchanatheswaran, K. (2007). Polyhedron, 26, 3491–3495.

Sabounchei, S. J., Dadrass, A., Akhlaghi, F., Nojini, Z. B. & Khavasi, H. R. (2008). Polyhedron, 27, 1963–1968.

Sabounchei, S. J., Jodaian, V. & Khavasi, H. R. (2007). Polyhedron, 26, 2845–2850.

Sabounchei, S. J., Jodaian, V., Salehzadeh, S., Samiee, S., Dadrass, A., Bayat, M. & Khavasi, H. R. (2010). Helv. Chim. Acta, 93, 1105–1119.

Sabounchei, S. J., Nemattalab, H., Salehzadeh, S., Khani, S., Bayat, M., Adams, H. & Ward, M. D. (2009). Inorg. Chim. Acta, 362, 105–112.

Sabounchei, S. J., Salehzadeh, S., Hosseinzadeh, M., Bagherjeri, F. A. & Khavasi, H. R. (2011). Polyhedron, 30, 2486–2492.

Sabounchei, S. J., Samiee, S., Salehzadeh, S., Nojini, Z. B., Bayat, M., Irran, E. & Borowski, M. (2010). Inorg. Chim. Acta, 363, 3654–3661.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.