organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3231-o3232

4-Methyl­phenyl quinoline-2-carboxyl­ate

aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 19 October 2012; accepted 23 October 2012; online 27 October 2012)

In the title compound, C17H13NO2, two mol­ecules crystallize in the asymmetric unit. The dihedral angle between the mean planes of the quinoline and benzene rings are 78.3 (4) and 88.2 (3)°. The carboxyl­ate group is twisted slightly from the quinoline ring by 7.1 (2) and 13.3 (4)°, respectively. In the crystal, weak C—H⋯O inter­actions are observed. Further stabilization is provided by weak ππ stacking inter­actions, with centroid–centroid distances of 3.564 (9)/3.689 (2) and 3.830 (1)/3.896 (5)Å, respectively.

Related literature

For heterocycles in natural products, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]). For heterocycles in fragrances and dyes, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). For heterocycles in biologically active compounds, see: Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). For quinoline alkaloids used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998[Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.]). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011[Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488-1508.]). For related structures, see: Dobrzyńska & Jerzykiewicz, (2004[Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51-55.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.]); Jing & Qin (2008[Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35-36.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.]). For bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2

  • Mr = 263.28

  • Orthorhombic, P b c a

  • a = 11.5421 (2) Å

  • b = 17.3191 (3) Å

  • c = 26.6667 (5) Å

  • V = 5330.65 (16) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.22 × 0.14 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.726, Tmax = 1.000

  • 34626 measured reflections

  • 5265 independent reflections

  • 4303 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.02

  • 5265 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15B—H15B⋯O2Ai 0.93 2.59 3.343 (2) 138
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline-2-carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualization reagents, fluorescent labeled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of quinoline-2-carboxylic acid (Dobrzyńska & Jerzykiewicz, 2004), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) and the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, the paper reports the crystal structure of the title compound, 4-methylphenyl quinoline-2-carboxylate, (I).

In the title compound, C17H13NO2, two molecules (A & B) crystallize in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the quinoline and benzene rings are 78.3 (4)° (A) and 88.2 (3)° (B). The carboxylate group is twisted slightly from the quinoline ring by 7.1 (2)° (A) and 13.3 (4)° B, respectively. Bond lengths are in normal ranges (Allen et al., (1987). In the crystal weak C—H···O intermolecular interactions are observed (Fig. 2). Further stabilization is provided by weak ππ stacking interactions with centroid to centroid distances of 3.564 (9)Å (Cg2-Cg1], 3.689 (2)Å (Cg2-Cg6), 3.830 (1)Å (Cg1-Cg5) and 3.896 (5)Å (Cg1-Cg1) [where Cg1 = N1A/C1A/C6A/C7A/C8A/C9A; Cg2 = C1A–C6A; Cg5 = N1B/C1B/C6B/C7B/C8B/C9B; C6 = C1B–C6B].

Related literature top

For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al. (1988). For quinoline alkaloids used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Dobrzyńska & Jerzykiewicz, (2004); Butcher et al. (2007); Jing & Qin, (2008); Jasinski et al. (2010). For bond lengths, see Allen et al. (1987).

Experimental top

To a mixture of (1.73 g, 10 mmole) of quinaldic acid and p-cresol (1.08 g, 10 mmole) in a round-bottomed flask fitted with a reflux condenser with a drying tube, 0.75 g (5 mmole) of phosphorous oxychloride was added. The mixture was heated with occasional swirling, and temperature maintained at 348–353 K. At the end of six hours, the reaction mixture was poured into a solution of 2 g of sodium bicarbonate in 25 mL of water. The precipitated ester was filtered and washed with water. The yield of crude, air dried p-tolyl quinoline-2-carboxylate was 1.75 to 1.85 g (65-70%). X-ray quality crystals were obtained by recrystallization from absolute ethanol (m.p.: 396-398 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH) or 1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme of two molecules (A & B) in the asymmetric unit and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular interactions. The remaining H atoms have been removed for clarity.
4-Methylphenyl quinoline-2-carboxylate top
Crystal data top
C17H13NO2F(000) = 2208
Mr = 263.28Dx = 1.312 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 10490 reflections
a = 11.5421 (2) Åθ = 3.8–72.7°
b = 17.3191 (3) ŵ = 0.70 mm1
c = 26.6667 (5) ÅT = 173 K
V = 5330.65 (16) Å3Chunk, colorless
Z = 160.22 × 0.14 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
5265 independent reflections
Radiation source: Enhance (Cu) X-ray Source4303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.0416 pixels mm-1θmax = 72.8°, θmin = 4.9°
ω scansh = 1410
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010)
k = 2021
Tmin = 0.726, Tmax = 1.000l = 3231
34626 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0604P)2 + 1.783P]
where P = (Fo2 + 2Fc2)/3
5265 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H13NO2V = 5330.65 (16) Å3
Mr = 263.28Z = 16
Orthorhombic, PbcaCu Kα radiation
a = 11.5421 (2) ŵ = 0.70 mm1
b = 17.3191 (3) ÅT = 173 K
c = 26.6667 (5) Å0.22 × 0.14 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
5265 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010)
4303 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 1.000Rint = 0.046
34626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
5265 reflectionsΔρmin = 0.19 e Å3
363 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.12216 (11)0.67251 (7)0.39057 (4)0.0511 (3)
O2A0.13223 (13)0.56857 (9)0.34041 (5)0.0657 (4)
N1A0.03742 (11)0.60902 (8)0.44686 (5)0.0390 (3)
C1A0.11347 (13)0.57558 (9)0.47931 (6)0.0396 (4)
C2A0.14961 (14)0.61816 (10)0.52172 (6)0.0450 (4)
H2A0.12440.66880.52590.054*
C3A0.22121 (15)0.58568 (11)0.55662 (7)0.0525 (4)
H3A0.24370.61420.58450.063*
C4A0.26120 (16)0.50963 (12)0.55081 (8)0.0578 (5)
H4A0.30970.48800.57490.069*
C5A0.22915 (15)0.46757 (11)0.51017 (8)0.0569 (5)
H5A0.25610.41720.50670.068*
C6A0.15524 (14)0.49894 (9)0.47282 (7)0.0464 (4)
C7A0.11881 (16)0.45862 (10)0.43001 (8)0.0537 (5)
H7A0.14620.40900.42380.064*
C8A0.04317 (17)0.49246 (10)0.39768 (7)0.0526 (5)
H8A0.01850.46640.36910.063*
C9A0.00251 (14)0.56800 (9)0.40816 (6)0.0422 (4)
C10A0.08924 (16)0.60161 (10)0.37521 (6)0.0455 (4)
C11A0.21459 (15)0.70870 (10)0.36529 (6)0.0447 (4)
C12A0.32213 (17)0.70819 (12)0.38707 (7)0.0555 (5)
H12A0.33480.68150.41680.067*
C13A0.41123 (16)0.74779 (11)0.36423 (7)0.0534 (4)
H13A0.48420.74750.37900.064*
C14A0.39551 (15)0.78789 (10)0.32009 (6)0.0452 (4)
C15A0.28520 (17)0.78769 (12)0.29953 (7)0.0553 (5)
H15A0.27190.81470.26990.066*
C16A0.19469 (16)0.74867 (12)0.32171 (7)0.0535 (5)
H16A0.12120.74940.30740.064*
C17A0.49506 (18)0.82914 (13)0.29514 (7)0.0600 (5)
H17D0.51320.80400.26400.090*
H17E0.56160.82780.31670.090*
H17F0.47380.88180.28880.090*
O1B0.66824 (11)0.35457 (6)0.36695 (4)0.0466 (3)
O2B0.60648 (11)0.25607 (7)0.31907 (5)0.0540 (3)
N1B0.78323 (10)0.26045 (7)0.42615 (4)0.0322 (3)
C1B0.85486 (12)0.21554 (8)0.45442 (5)0.0309 (3)
C2B0.90207 (13)0.24698 (9)0.49877 (6)0.0365 (3)
H2B0.88200.29680.50850.044*
C3B0.97676 (14)0.20498 (9)0.52742 (6)0.0396 (3)
H3B1.00790.22650.55640.048*
C4B1.00717 (14)0.12907 (9)0.51339 (6)0.0409 (4)
H4B1.05760.10070.53340.049*
C5B0.96322 (14)0.09699 (9)0.47076 (6)0.0392 (4)
H5B0.98420.04700.46180.047*
C6B0.88617 (13)0.13903 (8)0.44012 (5)0.0330 (3)
C7B0.83864 (14)0.11000 (9)0.39521 (6)0.0385 (3)
H7B0.85670.06030.38460.046*
C8B0.76635 (14)0.15486 (9)0.36753 (6)0.0385 (3)
H8B0.73380.13630.33800.046*
C9B0.74165 (12)0.23042 (8)0.38463 (5)0.0332 (3)
C10B0.66380 (13)0.27980 (9)0.35296 (5)0.0362 (3)
C11B0.60426 (15)0.40810 (9)0.33826 (6)0.0396 (4)
C12B0.48842 (16)0.41864 (10)0.34708 (6)0.0481 (4)
H12B0.44960.38770.37010.058*
C13B0.42981 (16)0.47621 (11)0.32107 (6)0.0488 (4)
H13B0.35110.48350.32690.059*
C14B0.48616 (15)0.52276 (9)0.28679 (6)0.0428 (4)
C15B0.60316 (15)0.51005 (10)0.27840 (6)0.0428 (4)
H15B0.64220.54030.25510.051*
C16B0.66314 (15)0.45307 (9)0.30413 (6)0.0416 (4)
H16B0.74180.44540.29840.050*
C17B0.42202 (19)0.58559 (11)0.25908 (8)0.0597 (5)
H17A0.47120.63000.25580.089*
H17B0.35360.59940.27750.089*
H17C0.40050.56730.22640.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0630 (8)0.0459 (7)0.0443 (6)0.0036 (6)0.0113 (6)0.0089 (5)
O2A0.0815 (10)0.0666 (9)0.0489 (7)0.0005 (8)0.0093 (7)0.0219 (6)
N1A0.0399 (7)0.0362 (7)0.0408 (7)0.0000 (5)0.0069 (6)0.0042 (5)
C1A0.0340 (8)0.0357 (8)0.0491 (9)0.0000 (6)0.0108 (7)0.0032 (7)
C2A0.0400 (9)0.0456 (9)0.0493 (9)0.0030 (7)0.0047 (7)0.0009 (7)
C3A0.0397 (9)0.0626 (12)0.0552 (10)0.0000 (8)0.0009 (8)0.0061 (9)
C4A0.0396 (9)0.0603 (12)0.0735 (13)0.0004 (8)0.0007 (9)0.0205 (10)
C5A0.0391 (9)0.0409 (9)0.0908 (15)0.0038 (7)0.0120 (9)0.0193 (10)
C6A0.0384 (8)0.0339 (8)0.0670 (11)0.0023 (7)0.0151 (8)0.0030 (8)
C7A0.0485 (10)0.0333 (8)0.0793 (13)0.0010 (7)0.0175 (9)0.0060 (8)
C8A0.0572 (11)0.0427 (9)0.0580 (11)0.0080 (8)0.0130 (9)0.0156 (8)
C9A0.0438 (9)0.0388 (8)0.0439 (8)0.0053 (7)0.0119 (7)0.0067 (7)
C10A0.0544 (10)0.0463 (9)0.0357 (8)0.0079 (8)0.0076 (7)0.0088 (7)
C11A0.0535 (10)0.0437 (9)0.0368 (8)0.0051 (8)0.0066 (7)0.0038 (7)
C12A0.0650 (12)0.0597 (11)0.0418 (9)0.0046 (9)0.0070 (9)0.0130 (8)
C13A0.0509 (10)0.0619 (11)0.0475 (10)0.0043 (9)0.0101 (8)0.0077 (8)
C14A0.0526 (10)0.0464 (9)0.0366 (8)0.0057 (8)0.0002 (7)0.0019 (7)
C15A0.0584 (11)0.0684 (12)0.0390 (9)0.0069 (9)0.0039 (8)0.0129 (8)
C16A0.0452 (9)0.0704 (12)0.0447 (9)0.0062 (9)0.0045 (8)0.0059 (9)
C17A0.0640 (12)0.0682 (13)0.0477 (10)0.0078 (10)0.0010 (9)0.0003 (9)
O1B0.0612 (7)0.0323 (6)0.0463 (6)0.0021 (5)0.0194 (5)0.0004 (5)
O2B0.0662 (8)0.0464 (7)0.0494 (7)0.0073 (6)0.0224 (6)0.0120 (5)
N1B0.0362 (6)0.0270 (6)0.0333 (6)0.0016 (5)0.0012 (5)0.0006 (5)
C1B0.0337 (7)0.0259 (7)0.0330 (7)0.0026 (6)0.0037 (6)0.0012 (5)
C2B0.0435 (8)0.0283 (7)0.0378 (8)0.0004 (6)0.0009 (6)0.0010 (6)
C3B0.0460 (9)0.0366 (8)0.0363 (8)0.0016 (7)0.0036 (7)0.0017 (6)
C4B0.0433 (9)0.0379 (8)0.0417 (8)0.0057 (7)0.0005 (7)0.0083 (7)
C5B0.0466 (9)0.0270 (7)0.0441 (8)0.0049 (6)0.0069 (7)0.0036 (6)
C6B0.0371 (8)0.0267 (7)0.0351 (7)0.0019 (6)0.0083 (6)0.0007 (5)
C7B0.0488 (9)0.0265 (7)0.0400 (8)0.0000 (6)0.0061 (7)0.0051 (6)
C8B0.0467 (9)0.0343 (8)0.0343 (7)0.0045 (7)0.0007 (6)0.0068 (6)
C9B0.0346 (7)0.0318 (7)0.0332 (7)0.0036 (6)0.0020 (6)0.0009 (6)
C10B0.0385 (8)0.0367 (8)0.0335 (7)0.0013 (6)0.0014 (6)0.0026 (6)
C11B0.0514 (9)0.0332 (8)0.0341 (8)0.0026 (7)0.0108 (7)0.0023 (6)
C12B0.0519 (10)0.0484 (10)0.0440 (9)0.0026 (8)0.0000 (8)0.0086 (7)
C13B0.0458 (9)0.0545 (10)0.0462 (9)0.0072 (8)0.0011 (8)0.0022 (8)
C14B0.0528 (10)0.0387 (8)0.0369 (8)0.0061 (7)0.0073 (7)0.0029 (6)
C15B0.0533 (10)0.0414 (9)0.0337 (8)0.0005 (7)0.0022 (7)0.0030 (6)
C16B0.0444 (9)0.0426 (9)0.0378 (8)0.0034 (7)0.0022 (7)0.0044 (7)
C17B0.0685 (12)0.0532 (11)0.0573 (11)0.0158 (9)0.0089 (10)0.0076 (9)
Geometric parameters (Å, º) top
O1A—C10A1.349 (2)O1B—C10B1.3486 (18)
O1A—C11A1.409 (2)O1B—C11B1.4108 (18)
O2A—C10A1.198 (2)O2B—C10B1.1930 (18)
N1A—C9A1.316 (2)N1B—C9B1.3139 (18)
N1A—C1A1.362 (2)N1B—C1B1.3626 (18)
C1A—C2A1.413 (2)C1B—C2B1.412 (2)
C1A—C6A1.423 (2)C1B—C6B1.4254 (19)
C2A—C3A1.366 (2)C2B—C3B1.362 (2)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.404 (3)C3B—C4B1.411 (2)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.357 (3)C4B—C5B1.363 (2)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.419 (3)C5B—C6B1.410 (2)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.403 (3)C6B—C7B1.410 (2)
C7A—C8A1.360 (3)C7B—C8B1.358 (2)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.418 (2)C8B—C9B1.415 (2)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.494 (3)C9B—C10B1.501 (2)
C11A—C12A1.370 (2)C11B—C12B1.370 (2)
C11A—C16A1.372 (2)C11B—C16B1.377 (2)
C12A—C13A1.378 (3)C12B—C13B1.390 (2)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.379 (2)C13B—C14B1.382 (2)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.386 (2)C14B—C15B1.386 (2)
C14A—C17A1.508 (3)C14B—C17B1.509 (2)
C15A—C16A1.378 (3)C15B—C16B1.387 (2)
C15A—H15A0.9300C15B—H15B0.9300
C16A—H16A0.9300C16B—H16B0.9300
C17A—H17D0.9600C17B—H17A0.9600
C17A—H17E0.9600C17B—H17B0.9600
C17A—H17F0.9600C17B—H17C0.9600
C10A—O1A—C11A118.21 (13)C10B—O1B—C11B117.46 (12)
C9A—N1A—C1A117.78 (14)C9B—N1B—C1B117.50 (12)
N1A—C1A—C2A118.48 (14)N1B—C1B—C2B118.52 (12)
N1A—C1A—C6A122.53 (16)N1B—C1B—C6B122.45 (13)
C2A—C1A—C6A118.96 (16)C2B—C1B—C6B119.01 (13)
C3A—C2A—C1A120.60 (17)C3B—C2B—C1B120.54 (14)
C3A—C2A—H2A119.7C3B—C2B—H2B119.7
C1A—C2A—H2A119.7C1B—C2B—H2B119.7
C2A—C3A—C4A120.66 (19)C2B—C3B—C4B120.41 (15)
C2A—C3A—H3A119.7C2B—C3B—H3B119.8
C4A—C3A—H3A119.7C4B—C3B—H3B119.8
C5A—C4A—C3A120.14 (18)C5B—C4B—C3B120.54 (15)
C5A—C4A—H4A119.9C5B—C4B—H4B119.7
C3A—C4A—H4A119.9C3B—C4B—H4B119.7
C4A—C5A—C6A121.24 (17)C4B—C5B—C6B120.49 (14)
C4A—C5A—H5A119.4C4B—C5B—H5B119.8
C6A—C5A—H5A119.4C6B—C5B—H5B119.8
C7A—C6A—C5A124.10 (17)C7B—C6B—C5B123.60 (14)
C7A—C6A—C1A117.51 (17)C7B—C6B—C1B117.39 (14)
C5A—C6A—C1A118.38 (17)C5B—C6B—C1B119.00 (14)
C8A—C7A—C6A119.59 (16)C8B—C7B—C6B119.78 (14)
C8A—C7A—H7A120.2C8B—C7B—H7B120.1
C6A—C7A—H7A120.2C6B—C7B—H7B120.1
C7A—C8A—C9A119.04 (17)C7B—C8B—C9B118.53 (14)
C7A—C8A—H8A120.5C7B—C8B—H8B120.7
C9A—C8A—H8A120.5C9B—C8B—H8B120.7
N1A—C9A—C8A123.46 (17)N1B—C9B—C8B124.34 (14)
N1A—C9A—C10A117.90 (14)N1B—C9B—C10B117.87 (13)
C8A—C9A—C10A118.56 (15)C8B—C9B—C10B117.79 (13)
O2A—C10A—O1A123.60 (18)O2B—C10B—O1B124.15 (14)
O2A—C10A—C9A124.28 (17)O2B—C10B—C9B124.21 (14)
O1A—C10A—C9A112.06 (14)O1B—C10B—C9B111.63 (12)
C12A—C11A—C16A120.93 (17)C12B—C11B—C16B121.32 (15)
C12A—C11A—O1A118.69 (15)C12B—C11B—O1B120.35 (15)
C16A—C11A—O1A120.19 (16)C16B—C11B—O1B118.14 (15)
C11A—C12A—C13A119.03 (16)C11B—C12B—C13B119.00 (16)
C11A—C12A—H12A120.5C11B—C12B—H12B120.5
C13A—C12A—H12A120.5C13B—C12B—H12B120.5
C12A—C13A—C14A122.00 (17)C14B—C13B—C12B121.30 (17)
C12A—C13A—H13A119.0C14B—C13B—H13B119.4
C14A—C13A—H13A119.0C12B—C13B—H13B119.4
C13A—C14A—C15A117.20 (17)C13B—C14B—C15B118.22 (15)
C13A—C14A—C17A121.00 (16)C13B—C14B—C17B120.91 (17)
C15A—C14A—C17A121.79 (16)C15B—C14B—C17B120.87 (16)
C16A—C15A—C14A121.88 (16)C14B—C15B—C16B121.28 (16)
C16A—C15A—H15A119.1C14B—C15B—H15B119.4
C14A—C15A—H15A119.1C16B—C15B—H15B119.4
C11A—C16A—C15A118.95 (17)C11B—C16B—C15B118.88 (16)
C11A—C16A—H16A120.5C11B—C16B—H16B120.6
C15A—C16A—H16A120.5C15B—C16B—H16B120.6
C14A—C17A—H17D109.5C14B—C17B—H17A109.5
C14A—C17A—H17E109.5C14B—C17B—H17B109.5
H17D—C17A—H17E109.5H17A—C17B—H17B109.5
C14A—C17A—H17F109.5C14B—C17B—H17C109.5
H17D—C17A—H17F109.5H17A—C17B—H17C109.5
H17E—C17A—H17F109.5H17B—C17B—H17C109.5
C9A—N1A—C1A—C2A178.47 (14)C9B—N1B—C1B—C2B179.00 (13)
C9A—N1A—C1A—C6A0.2 (2)C9B—N1B—C1B—C6B0.8 (2)
N1A—C1A—C2A—C3A176.71 (15)N1B—C1B—C2B—C3B178.08 (13)
C6A—C1A—C2A—C3A1.6 (2)C6B—C1B—C2B—C3B0.2 (2)
C1A—C2A—C3A—C4A0.6 (3)C1B—C2B—C3B—C4B0.6 (2)
C2A—C3A—C4A—C5A0.2 (3)C2B—C3B—C4B—C5B0.7 (2)
C3A—C4A—C5A—C6A0.0 (3)C3B—C4B—C5B—C6B0.3 (2)
C4A—C5A—C6A—C7A179.93 (17)C4B—C5B—C6B—C7B179.09 (15)
C4A—C5A—C6A—C1A1.1 (3)C4B—C5B—C6B—C1B0.1 (2)
N1A—C1A—C6A—C7A2.5 (2)N1B—C1B—C6B—C7B0.9 (2)
C2A—C1A—C6A—C7A179.24 (15)C2B—C1B—C6B—C7B179.09 (13)
N1A—C1A—C6A—C5A176.45 (14)N1B—C1B—C6B—C5B178.34 (13)
C2A—C1A—C6A—C5A1.8 (2)C2B—C1B—C6B—C5B0.1 (2)
C5A—C6A—C7A—C8A176.68 (17)C5B—C6B—C7B—C8B179.01 (14)
C1A—C6A—C7A—C8A2.2 (2)C1B—C6B—C7B—C8B0.2 (2)
C6A—C7A—C8A—C9A0.2 (3)C6B—C7B—C8B—C9B0.6 (2)
C1A—N1A—C9A—C8A2.4 (2)C1B—N1B—C9B—C8B0.0 (2)
C1A—N1A—C9A—C10A174.34 (13)C1B—N1B—C9B—C10B179.30 (12)
C7A—C8A—C9A—N1A2.7 (3)C7B—C8B—C9B—N1B0.7 (2)
C7A—C8A—C9A—C10A174.08 (16)C7B—C8B—C9B—C10B178.62 (14)
C11A—O1A—C10A—O2A2.1 (3)C11B—O1B—C10B—O2B2.6 (2)
C11A—O1A—C10A—C9A175.13 (14)C11B—O1B—C10B—C9B176.32 (13)
N1A—C9A—C10A—O2A176.18 (17)N1B—C9B—C10B—O2B167.71 (15)
C8A—C9A—C10A—O2A0.7 (3)C8B—C9B—C10B—O2B12.9 (2)
N1A—C9A—C10A—O1A1.0 (2)N1B—C9B—C10B—O1B13.42 (19)
C8A—C9A—C10A—O1A177.91 (15)C8B—C9B—C10B—O1B165.96 (13)
C10A—O1A—C11A—C12A101.26 (19)C10B—O1B—C11B—C12B82.90 (19)
C10A—O1A—C11A—C16A83.7 (2)C10B—O1B—C11B—C16B101.91 (17)
C16A—C11A—C12A—C13A0.8 (3)C16B—C11B—C12B—C13B0.3 (3)
O1A—C11A—C12A—C13A175.76 (16)O1B—C11B—C12B—C13B174.77 (15)
C11A—C12A—C13A—C14A0.0 (3)C11B—C12B—C13B—C14B0.1 (3)
C12A—C13A—C14A—C15A0.7 (3)C12B—C13B—C14B—C15B0.8 (3)
C12A—C13A—C14A—C17A178.47 (18)C12B—C13B—C14B—C17B179.43 (17)
C13A—C14A—C15A—C16A0.6 (3)C13B—C14B—C15B—C16B1.0 (2)
C17A—C14A—C15A—C16A178.60 (19)C17B—C14B—C15B—C16B179.21 (16)
C12A—C11A—C16A—C15A0.9 (3)C12B—C11B—C16B—C15B0.1 (2)
O1A—C11A—C16A—C15A175.81 (17)O1B—C11B—C16B—C15B175.10 (13)
C14A—C15A—C16A—C11A0.2 (3)C14B—C15B—C16B—C11B0.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15B—H15B···O2Ai0.932.593.343 (2)138
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H13NO2
Mr263.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)11.5421 (2), 17.3191 (3), 26.6667 (5)
V3)5330.65 (16)
Z16
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.22 × 0.14 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.726, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
34626, 5265, 4303
Rint0.046
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.02
No. of reflections5265
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15B—H15B···O2Ai0.932.593.343 (2)137.8
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

EF thanks Yuvaraja's college, UOM for providing the research facilities and also to Dr. S. Nagarajan, Senior Scientist at CFTRI for giving valuable suggestions. JPJ acknowledges the NSF–MRI program (grant No·CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationJing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35–36.  CAS Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488–1508.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3231-o3232
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds