metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1377-m1378

Bis(acetato-κ2O,O′)(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)­zinc

aUniversidad Nacional de la Patagonia S.J.B. and Centro Nacional Patagonico, CONICET, Bvd. Alte. Brown 3700, 9120 Puerto Madryn, Chubut, Argentina, bDepartamento de Química Inorgánica, Analítica y Química, Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, cLaboratorio de Cristalografía, Difracción de Rayos-X, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile. Av. Blanco Encalada 2008, Santiago, Chile, and dGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: unharvey@cenpat.edu.ar

(Received 10 October 2012; accepted 11 October 2012; online 20 October 2012)

The mol­ecular structure of the title compound, [Zn(CH3COO)2(C12H12N2)], consists of isolated mol­ecules bis­ected by a twofold rotation axis which goes through the ZnII cation and halves the organic base through the central C—C bond. The ZnII ion is coordinated by two N atoms from one mol­ecule of the aromatic base and four O atoms from two bidentate, symmetry-related acetate anions, which coordinate asym­metrically [Zn—O distances of 2.058 (2) and 2.362 (3) Å], while the two Zn—N bond distances are equal as imposed by symmetry [2.079 (2) Å]. The crystal structure is supported by a number of weak C—H⋯O inter­actions and C—H⋯π contacts, with no ππ inter­actions present, mainly hindered by the substituent methyl groups and the relative mol­ecular orientation. The result is a three-dimensional structure in which each mol­ecule is linked to eight different neighbors.

Related literature

For properties of polypyridyl compounds, see: Steed & Atwood (2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd. ed., pp. 710-718. New York: John Wiley & Sons.]). For related structures, see: Barquín et al. (2010[Barquín, M., Cocera, N., González Garmendia, M. J., Larrínaga, L., Pinilla, E., Seco, J. M. & Torres, M. R. (2010). Inorg. Chim. Acta, 363, 127-133.]). For details of the vectorial bond–valence model, see Harvey et al. (2006[Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038-1042.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O2)2(C12H12N2)]

  • Mr = 367.71

  • Orthorhombic, F d d 2

  • a = 14.4779 (5) Å

  • b = 28.5700 (15) Å

  • c = 8.0854 (3) Å

  • V = 3344.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 295 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Gemini CCD S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.65, Tmax = 0.75

  • 3945 measured reflections

  • 1563 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.09

  • 1563 reflections

  • 107 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 374 Friedel pairs

  • Flack parameter: 0.010 (16)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the Zn1,O1,C7,O2 and N1,C1–C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.53 3.354 (4) 147
C6—H6A⋯O2ii 0.96 2.56 3.438 (4) 153
C4—H4⋯Cg1iii 0.93 2.99 3.874 (4) 160
C4—H4⋯Cg1ii 0.93 2.96 3.766 (4) 145
C8—H8BCg2iv 0.96 2.96 3.804 (4) 147
Symmetry codes: (i) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (ii) -x, -y, z+1; (iii) x, y, z+1; (iv) [x-{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Polypyridil compounds and some of their derivatives have shown to be fruitful ligands in supramolecular photochemistry, due to the capability of its extended π- systems to absorb light. They can act as light harvesters as much as to relax photoexcited metal centres via MLCT to the ligand-centred π*L orbital; some interesting examples can be found in Steed & Atwood, 2009. In particular, in the case of 4,4'-dimethyl-2,2'-bipyridine (dmbp), the presence of the methyl groups in the aromatic ligand can additionally influence the structural behavior when binding to a metal centre. We present in what follows the crystal and molecular structure of the title compound, C16H18N2O4Zn, consisting of isolated Zn(dmbp)(ac)2, molecules (ac = acetate) bisected by a twofold axis which goes through the Zn(II) cation and halves the organic base through the central C—C bond.

The Zn(II) ion is coordinated by two nitrogen atoms from one molecule of the aromatic base and four oxygen atoms from two bidentate, symmetry related acetate anions (Fig. 1). A very similar compound, with Cu(II) as its central cation has been reported in Barquín et al., 2010. Donor atoms in the title compound can not fit in any regular polyhedron, but the three chelate ligands fulfill the vector bond valence postulate of the Vectorial Bond-Valence Model (for details on the theory see Harvey et al., 2006). The three ligand vectors, as defined therein, lay in a planar trigonal geometry with a sum of angles equal to 359.6 (2)° (ideal: 360°) and a resultant vector modulus of 0.03 v.u. (Ideal: 0.00 v.u.).

Both acetate anions coordinate asymmetrically (Zn—O distances 2.058 (2) and 2.362 (3) Å), while the two Zn—N bond distances are equal (2.079 (2) Å) as imposed by symmetry.

The crystal structure is supported by a number of weak C—H···O interactions (Table 1, entries 1,2) and C—H···π contacts (Table 1, entries 3 to 5). In spite of the presence of aromatic rings there are no π-π interactions in the structure, mainly hindered by the substituent methyl groups and the relative molecular orientation.

The overall effect of these weak interactions, uniformly distributed in space, is the formation of a three-dimensional structure where each molecule is linked to eight different neighbors. Fig. 2 presents a highly simplified packing view projected down c, where only the C—H···O bonds have been drawn, for clarity, and where the complex linkage can be envisaged.

Related literature top

For properties of polypyridyl compounds, see Steed & Atwood (2009). For related structures, see: Barquín et al. (2010). For details of the vectorial bond–valence model, see Harvey et al. (2006).

Experimental top

The title compound was obtained as an unexpected byproduct in an attempt to synthesize a Zn tetrathionate complex with the aromatic base. Solid Zn acetate dihydrate, 4,4'-Dimethylbipyridine and potassium tetrathionate, 0.050 mmol of each, were added to 5 ml of dimethylformamide. On standing, colorless blocks of the title compound could be extracted for diffraction experiments.

Refinement top

All H atoms were confirmed in a difference map, further idealized and allowed to ride, with displacement parameters taken as Uiso(H) = X × Ueq(C) [(C—H) methyl = 0.96 A°, X = 1.5; (C—H) arom = 0.93 A°, X = 1.2] (CH3 groups were also free to rotate as well).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of (I), drawn with displacement factors at a 40% probability level. In full(empty) ellipsods and bonds, the independent(symmetry related) part of the structure. Symmetry code: (v): -x, -y, z
[Figure 2] Fig. 2. Packing view projected down c. Only the C—H···O interactions have been drawn (in broken lines). H atoms not invovled in these interactions have been omitted, for clarity. Symmetry codes: (i) x + 1/4, -y + 1/4, z + 1/4; (ii) -x, -y, z + 1.
Bis(acetato-κ2O,O')(4,4'-dimethyl-2,2'-bipyridine- κ2N,N')zinc top
Crystal data top
[Zn(C2H3O2)2(C12H12N2)]F(000) = 1520
Mr = 367.71Dx = 1.461 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1985 reflections
a = 14.4779 (5) Åθ = 3.6–28.9°
b = 28.5700 (15) ŵ = 1.49 mm1
c = 8.0854 (3) ÅT = 295 K
V = 3344.4 (2) Å3Prism, white
Z = 80.3 × 0.3 × 0.2 mm
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
1481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scans, thick slicesθmax = 29.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1718
Tmin = 0.65, Tmax = 0.75k = 3717
3945 measured reflectionsl = 105
1563 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.025P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1563 reflectionsΔρmax = 0.28 e Å3
107 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 374 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (16)
Crystal data top
[Zn(C2H3O2)2(C12H12N2)]V = 3344.4 (2) Å3
Mr = 367.71Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 14.4779 (5) ŵ = 1.49 mm1
b = 28.5700 (15) ÅT = 295 K
c = 8.0854 (3) Å0.3 × 0.3 × 0.2 mm
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
1563 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1481 reflections with I > 2σ(I)
Tmin = 0.65, Tmax = 0.75Rint = 0.015
3945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.28 e Å3
S = 1.09Δρmin = 0.26 e Å3
1563 reflectionsAbsolute structure: Flack (1983), 374 Friedel pairs
107 parametersAbsolute structure parameter: 0.010 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn1000.08552 (5)0.04845 (13)
O10.10026 (14)0.03972 (8)0.0279 (3)0.0745 (6)
N10.02563 (14)0.04418 (7)0.2846 (2)0.0456 (4)
O20.12535 (18)0.03328 (9)0.0599 (3)0.0843 (7)
C40.01794 (12)0.05180 (7)0.5779 (5)0.0421 (5)
H40.00710.0380.68030.051*
C70.14861 (19)0.00731 (10)0.0837 (4)0.0548 (7)
C50.01168 (12)0.02544 (8)0.4354 (3)0.0361 (4)
C80.2331 (2)0.01806 (14)0.1800 (9)0.0900 (14)
H8B0.27770.03280.10930.135*
H8C0.25840.01040.22380.135*
H8A0.21780.03880.26940.135*
C30.04052 (15)0.09917 (8)0.5683 (4)0.0502 (5)
C10.0483 (2)0.08971 (10)0.2769 (4)0.0604 (7)
H10.05860.1030.17350.073*
C20.05697 (19)0.11722 (9)0.4128 (4)0.0607 (7)
H20.07410.14840.4010.073*
C60.0449 (2)0.12828 (10)0.7225 (4)0.0719 (9)
H6A0.07210.11030.81010.108*
H6C0.01640.13760.75380.108*
H6B0.08180.15560.70240.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04289 (17)0.0737 (3)0.02871 (17)0.01368 (17)00
O10.0622 (11)0.0907 (14)0.0706 (15)0.0028 (10)0.0158 (11)0.0093 (12)
N10.0478 (10)0.0549 (11)0.0342 (11)0.0047 (8)0.0032 (8)0.0080 (8)
O20.0909 (16)0.0871 (15)0.0749 (17)0.0313 (12)0.0146 (13)0.0022 (13)
C40.0424 (11)0.0480 (10)0.0361 (11)0.0034 (8)0.0042 (16)0.0013 (12)
C70.0399 (12)0.0850 (19)0.0393 (14)0.0085 (11)0.0013 (10)0.0056 (13)
C50.0329 (9)0.0459 (12)0.0296 (11)0.0036 (7)0.0017 (8)0.0031 (9)
C80.061 (2)0.109 (3)0.100 (4)0.0012 (17)0.037 (3)0.017 (3)
C30.0452 (10)0.0462 (11)0.0593 (16)0.0006 (9)0.0095 (12)0.0025 (12)
C10.0654 (15)0.0602 (15)0.0557 (18)0.0014 (12)0.0060 (12)0.0240 (13)
C20.0621 (16)0.0440 (12)0.076 (2)0.0032 (11)0.0005 (14)0.0087 (14)
C60.080 (2)0.0559 (15)0.079 (2)0.0007 (14)0.0190 (17)0.0158 (16)
Geometric parameters (Å, º) top
Zn1—O1i2.058 (2)C4—H40.93
Zn1—O12.058 (2)C7—C81.482 (5)
Zn1—N12.079 (2)C5—C5i1.493 (4)
Zn1—N1i2.079 (2)C8—H8B0.96
Zn1—O22.362 (3)C8—H8C0.96
Zn1—O2i2.362 (3)C8—H8A0.96
Zn1—C72.558 (3)C3—C21.380 (4)
Zn1—C7i2.558 (3)C3—C61.500 (4)
O1—C71.246 (3)C1—C21.357 (4)
N1—C11.343 (3)C1—H10.93
N1—C51.347 (3)C2—H20.93
O2—C71.223 (3)C6—H6A0.96
C4—C51.380 (4)C6—H6C0.96
C4—C31.394 (3)C6—H6B0.96
O1i—Zn1—O1127.09 (15)C5—C4—C3119.9 (3)
O1i—Zn1—N1123.63 (9)C5—C4—H4120
O1—Zn1—N197.82 (8)C3—C4—H4120
O1i—Zn1—N1i97.82 (8)O2—C7—O1119.6 (3)
O1—Zn1—N1i123.63 (9)O2—C7—C8120.4 (3)
N1—Zn1—N1i78.52 (11)O1—C7—C8120.0 (3)
O1i—Zn1—O295.63 (10)O2—C7—Zn166.85 (17)
O1—Zn1—O257.21 (9)O1—C7—Zn152.72 (15)
N1—Zn1—O2140.08 (8)C8—C7—Zn1172.7 (2)
N1i—Zn1—O290.22 (9)N1—C5—C4122.0 (2)
O1i—Zn1—O2i57.21 (9)N1—C5—C5i114.92 (13)
O1—Zn1—O2i95.63 (10)C4—C5—C5i123.13 (15)
N1—Zn1—O2i90.22 (9)C7—C8—H8B109.5
N1i—Zn1—O2i140.08 (8)C7—C8—H8C109.5
O2—Zn1—O2i120.30 (15)H8B—C8—H8C109.5
O1i—Zn1—C7113.57 (9)C7—C8—H8A109.5
O1—Zn1—C728.79 (8)H8B—C8—H8A109.5
N1—Zn1—C7120.97 (8)H8C—C8—H8A109.5
N1i—Zn1—C7108.27 (9)C2—C3—C4117.0 (3)
O2—Zn1—C728.42 (8)C2—C3—C6122.9 (2)
O2i—Zn1—C7110.31 (10)C4—C3—C6120.1 (3)
O1i—Zn1—C7i28.79 (8)N1—C1—C2123.1 (2)
O1—Zn1—C7i113.57 (9)N1—C1—H1118.5
N1—Zn1—C7i108.27 (9)C2—C1—H1118.5
N1i—Zn1—C7i120.97 (8)C1—C2—C3120.4 (2)
O2—Zn1—C7i110.31 (10)C1—C2—H2119.8
O2i—Zn1—C7i28.42 (8)C3—C2—H2119.8
C7—Zn1—C7i115.34 (13)C3—C6—H6A109.5
C7—O1—Zn198.50 (18)C3—C6—H6C109.5
C1—N1—C5117.6 (2)H6A—C6—H6C109.5
C1—N1—Zn1126.56 (18)C3—C6—H6B109.5
C5—N1—Zn1115.64 (15)H6A—C6—H6B109.5
C7—O2—Zn184.73 (19)H6C—C6—H6B109.5
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the Zn1,O1,C7,O2 and N1,C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1ii0.932.533.354 (4)147
C6—H6A···O2iii0.962.563.438 (4)153
C4—H4···Cg1iv0.932.993.874 (4)160
C4—H4···Cg1iii0.932.963.766 (4)145
C8—H8B···Cg2v0.962.963.804 (4)147
Symmetry codes: (ii) x+1/4, y+1/4, z+1/4; (iii) x, y, z+1; (iv) x, y, z+1; (v) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O2)2(C12H12N2)]
Mr367.71
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)295
a, b, c (Å)14.4779 (5), 28.5700 (15), 8.0854 (3)
V3)3344.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction Gemini CCD S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.65, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
3945, 1563, 1481
Rint0.015
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.09
No. of reflections1563
No. of parameters107
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26
Absolute structureFlack (1983), 374 Friedel pairs
Absolute structure parameter0.010 (16)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the Zn1,O1,C7,O2 and N1,C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.533.354 (4)147
C6—H6A···O2ii0.962.563.438 (4)153
C4—H4···Cg1iii0.932.993.874 (4)160
C4—H4···Cg1ii0.932.963.766 (4)145
C8—H8B···Cg2iv0.962.963.804 (4)147
Symmetry codes: (i) x+1/4, y+1/4, z+1/4; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1/2, y, z1/2.
 

Acknowledgements

We would like to thank the Spanish Research Council (CSIC) for providing us with a free-of charge licence to the CSD System (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). FONCyT grant PME-01113 (XRD) is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals
First citationBarquín, M., Cocera, N., González Garmendia, M. J., Larrínaga, L., Pinilla, E., Seco, J. M. & Torres, M. R. (2010). Inorg. Chim. Acta, 363, 127–133.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationHarvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038–1042.  Web of Science CrossRef CAS IUCr Journals
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd. ed., pp. 710–718. New York: John Wiley & Sons.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1377-m1378
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds