[Journal logo]

Volume 68 
Part 11 
Pages m1414-m1415  
November 2012  

Received 16 October 2012
Accepted 23 October 2012
Online 27 October 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.005 Å
Disorder in solvent or counterion
R = 0.042
wR = 0.083
Data-to-parameter ratio = 14.0
Details
Open access

Bis(2,2':6',2''-terpyridine)ruthenium(II) bis(perchlorate) hemihydrate

aInstitute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland
Correspondence e-mail: k.brzezinski@uwb.edu.pl

The asymmetric unit of the title compound, [Ru(C15H11N3)2](ClO4)2·0.5H2O, contains one ruthenium-terpiridine complex cation, two perchlorate anions and one half-molecule of water. Face-to-face and face-to-edge [pi]-stacking interactions between terpyridine units [centroid-centroid distances = 3.793 (2) and 3.801 (2)  Å] stabilize the crystal lattice The partially occupied water molecule interacts with two perchlorate ions via O-H...O hydrogen bonds. In the crystal lattice, the complex cations, perchlorate ion-water pairs and the second perchlorate anions are arranged into columns along b direction.

Related literature

For the preparation of terpyridine complexes with transition metals, see: Burstall & Nyholm (1952[Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570-3579.]). For the structures of salts of complexes of ruthenium with terpyridine, see: Craig et al. (1998[Craig, D. C., Scudder, M. L., McHale, W.-A. & Goodwin, H. A. (1998). Aust. J. Chem. 51, 1131-1140.]); Lashgari et al. (1999[Lashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64-67.]); Pyo et al. (1999[Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem. 38, 3337-3343.]); Tovee et al. (2009[Tovee, C. A., Kilner, C. A., Thomas, J. A. & Halcrow, M. A. (2009). CrystEngComm, 11, 2069-2077.]); Walstrom et al. (2009[Walstrom, A. G., Pink, M., Yang, X. & Caulton, K. G. (2009). Dalton Trans. pp. 6001-6006.]). For background to the properties and applications of terpiridine complexes, see: Anders & Schubert (2004[Anders, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.]); Constable (2007[Constable, E. C. (2007). Chem. Soc. Rev. 36, 246-253.]); Plonska et al. (2002[Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77-84.]); Winkler et al. (2003[Winkler, K., Plonska, M. E., Basa, A., Lach, M. & Balch, A. L. (2003). Electroanalysis, 15, 55-65.], 2006[Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544-4553.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C15H11N3)2](ClO4)2·0.5H2O

  • Mr = 775.51

  • Monoclinic, P 21 /n

  • a = 8.7676 (2) Å

  • b = 8.8221 (9) Å

  • c = 39.118 (4) Å

  • [beta] = 93.582 (5)°

  • V = 3019.8 (4) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.76 mm-1

  • T = 100 K

  • 0.15 × 0.12 × 0.03 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.801, Tmax = 1.000

  • 16537 measured reflections

  • 6158 independent reflections

  • 5858 reflections with I > 2[sigma](I)

  • Rint = 0.027

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.083

  • S = 1.27

  • 6158 reflections

  • 439 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.65 e Å-3

  • [Delta][rho]min = -1.17 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centoids of the N3A-C15A and N3B-C15B rings, respectively.

D-H...A D-H H...A D...A D-H...A
O5-H5A...O2Ai 0.85 (2) 1.98 (3) 2.790 (6) 159 (7)
O5-H5B...O1A 0.85 (2) 2.03 (3) 2.824 (6) 157 (7)
C2B-H2B...Cg1ii 0.95 3.09 (1) 3.945 (4) 45 (1)
C14A-H14A...Cg2iii 0.95 3.01 (1) 3.878 (4) 43 (1)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6849 ).


Acknowledgements

This work was supported by the HOMING PLUS project of the Foundation for Polish Science (MK and PR) and the National Science Center, Poland (grant No. NN204396640). The X-ray diffractometer was funded by EFRD as part of the Operational Programme Development of Eastern Poland 2007-2013, project POPW.01.03.00-20-034/09-00.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Anders, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.
Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570-3579.  [CrossRef]
Constable, E. C. (2007). Chem. Soc. Rev. 36, 246-253.  [ISI] [CrossRef] [PubMed] [ChemPort]
Craig, D. C., Scudder, M. L., McHale, W.-A. & Goodwin, H. A. (1998). Aust. J. Chem. 51, 1131-1140.  [ISI] [CrossRef] [ChemPort]
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Lashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64-67.  [CSD] [CrossRef] [details]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77-84.  [ChemPort]
Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem. 38, 3337-3343.  [ISI] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Tovee, C. A., Kilner, C. A., Thomas, J. A. & Halcrow, M. A. (2009). CrystEngComm, 11, 2069-2077.  [ISI] [CSD] [CrossRef] [ChemPort]
Walstrom, A. G., Pink, M., Yang, X. & Caulton, K. G. (2009). Dalton Trans. pp. 6001-6006.  [CSD] [CrossRef]
Winkler, K., Plonska, M. E., Basa, A., Lach, M. & Balch, A. L. (2003). Electroanalysis, 15, 55-65.  [CrossRef] [ChemPort]
Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544-4553.  [ISI] [CrossRef] [ChemPort]


Acta Cryst (2012). E68, m1414-m1415   [ doi:10.1107/S1600536812043917 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.