organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Quinolin-3-amine

aNational Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bManipal Institute of Technology, Department of Chemistry, Manipal 576 104, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 6 October 2012; accepted 11 October 2012; online 20 October 2012)

In the crystal structur of the achiral title compound, C9H8N2, N—H⋯N hydrogen bonds connect the mol­ecules into zigzag chains in [100]. Weak inter­molecular N–H⋯π inter­actions further consolidate the crystal packing.

Related literature

For novel applications of quinolin-3-amine and its derivatives, see: Rohmer et al. (2010[Rohmer, M., Meyer, B., Mank, M., Stahl, B., Bahr, U. & Karas, M. (2010). Anal. Chem. 82, 3719-3726.]); Kaneshiro et al. (2011[Kaneshiro, K., Fukuyama, Y., Iwamoto, S., Sekiya, S. & Tanaka, K. (2011). Anal. Chem. 83, 3663-3667.]). For the crystal structure of a rhodium coordination compound featuring the title compound as a ligand, see: Garralda et al. (1999[Garralda, M. A., Hernandez, R., Pinilla, E. & Rosario Torres, M. (1999). J. Organomet. Chem. 586, 150-158.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2

  • Mr = 144.17

  • Orthorhombic, P 21 21 21

  • a = 7.6223 (3) Å

  • b = 7.6289 (3) Å

  • c = 12.6967 (4) Å

  • V = 738.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.55 × 0.52 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.988

  • 6898 measured reflections

  • 1077 independent reflections

  • 1015 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.03

  • 1077 reflections

  • 108 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1/C5–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.90 (2) 2.22 (2) 3.0761 (17) 158.2 (18)
N2—H2ACgii 0.85 (2) 2.60 (2) 3.3101 (15) 142.3 (19)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

3-Aminoquinoline and its derivatives have found applications in matrix-assisted laser desorption ionization (MALDI) mass-spectrometry of oligosaccharides (Rohmer et al., 2010) and glycans (Kaneshiro et al., 2011). Herewith we present the crystal structure of 3-aminoquinoline, (I).

In (I) (Fig. 1), the molecule bears an amino group in meta position to the intracyclic nitrogen atom. Intracyclic angles in the six-membered ring containing the nitrogen atom cover a range of 117.42 (12)–125.27 (11) ° with the smallest angle found on the carbon atom bearing the amino group and the biggest angle present on the hydrogen-bearing carbon atom in ortho position to the intracyclic nitrogen atom. The molecule is essentially planar (r.m.s. deviation of of all fitted non-hydrogen atoms = 0.0091 Å). The least-squares planes defined by the non-hydrogen atoms of the heterocycle on the one hand and the atoms of the amino group on the other hand intersect at an angle of 11.97(2.58) °.

In the crystal, N–H···N hydrogen bonds (Table 1) are observed between the amino group and the intracyclic nitrogen atom that connect the molecules to zigzag chains along the crystallographic a axis (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(5) on the unary level. In addition, a N–H···π interaction (Table 1) involving the non-heterocyclic moiety of the quinoline core as acceptor contribute to the crystal packing stability.

Related literature top

For novel applications of 3-aminoquinoline and its derivatives, see: Rohmer et al. (2010); Kaneshiro et al. (2011). For the crystal structure of a rhodium coordination compound featuring the title compound as a ligand, see: Garralda et al. (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a solution of 3-nitroquinoline (1 g, 0.0057 mol) in methanol (20 ml) 10% palladium on carbon (0.10 g) was added. The batch was hydrogenated at a pressure of 10 bar for 12 h. Subsequently, the reaction mixture was filtered and concentrated under reduced pressure to afford the title compound as a pale yellow solid. The solid was dissolved in absolute ethanol and allowed to stand and evaporate at room temperature overnight. The crystalline solid that developed was filtered and dried under high vacuum (yield: 0.8 g, 97.5%).

Refinement top

C-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). Both amino H atoms were located on a difference Fourier map and refined freely. In the absence of strong anomalous scatterers, 737 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).
[Figure 2] Fig. 2. A portion of the crystal packing viewed along [010]. Dashed lines indicate N–H···N hydrogen bonds. Symmetry codes: (i) x - 1/2, -y + 1/2, -z + 1; (ii) x + 1/2, -y + 1/2, -z + 1.
Quinolin-3-amine top
Crystal data top
C9H8N2Dx = 1.297 Mg m3
Mr = 144.17Melting point = 366–368 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5242 reflections
a = 7.6223 (3) Åθ = 2.7–28.3°
b = 7.6289 (3) ŵ = 0.08 mm1
c = 12.6967 (4) ÅT = 200 K
V = 738.31 (5) Å3Block, colourless
Z = 40.55 × 0.52 × 0.15 mm
F(000) = 304
Data collection top
Bruker APEXII CCD
diffractometer
1077 independent reflections
Radiation source: fine-focus sealed tube1015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 610
Tmin = 0.950, Tmax = 0.988k = 910
6898 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.1011P]
where P = (Fo2 + 2Fc2)/3
1077 reflections(Δ/σ)max < 0.001
108 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H8N2V = 738.31 (5) Å3
Mr = 144.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6223 (3) ŵ = 0.08 mm1
b = 7.6289 (3) ÅT = 200 K
c = 12.6967 (4) Å0.55 × 0.52 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1077 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1015 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.988Rint = 0.013
6898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
1077 reflectionsΔρmin = 0.20 e Å3
108 parameters
Special details top

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (737 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25487 (15)0.26319 (16)0.38612 (8)0.0280 (3)
N20.18546 (17)0.08305 (19)0.39280 (11)0.0359 (3)
H2A0.258 (3)0.023 (3)0.3568 (15)0.056 (6)*
H2B0.198 (2)0.098 (3)0.4628 (17)0.043 (5)*
C10.30327 (17)0.23241 (17)0.28353 (9)0.0249 (3)
C20.09884 (17)0.21121 (18)0.41581 (9)0.0277 (3)
H20.06630.23230.48690.033*
C30.02593 (17)0.12565 (16)0.35016 (9)0.0253 (3)
C40.02155 (18)0.09412 (17)0.24707 (10)0.0265 (3)
H40.05760.03760.20030.032*
C50.18933 (16)0.14693 (17)0.21189 (9)0.0244 (3)
C60.24840 (19)0.11883 (19)0.10713 (10)0.0299 (3)
H60.17430.06090.05800.036*
C70.4113 (2)0.17449 (19)0.07635 (10)0.0344 (3)
H70.44880.15530.00590.041*
C80.52397 (19)0.2599 (2)0.14793 (11)0.0353 (3)
H80.63660.29820.12560.042*
C90.47097 (17)0.28794 (19)0.25005 (11)0.0313 (3)
H90.54740.34480.29820.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0323 (5)0.0323 (6)0.0193 (5)0.0026 (5)0.0030 (4)0.0003 (4)
N20.0318 (6)0.0443 (7)0.0316 (6)0.0081 (5)0.0052 (5)0.0086 (6)
C10.0277 (6)0.0263 (6)0.0207 (5)0.0017 (5)0.0018 (5)0.0009 (5)
C20.0340 (6)0.0299 (6)0.0191 (5)0.0004 (5)0.0012 (5)0.0007 (5)
C30.0279 (6)0.0238 (5)0.0243 (6)0.0009 (5)0.0004 (5)0.0006 (5)
C40.0306 (6)0.0264 (6)0.0226 (5)0.0013 (5)0.0021 (5)0.0045 (5)
C50.0303 (6)0.0228 (6)0.0202 (5)0.0027 (5)0.0006 (5)0.0003 (5)
C60.0382 (7)0.0298 (6)0.0218 (6)0.0032 (5)0.0015 (5)0.0037 (5)
C70.0430 (7)0.0348 (7)0.0254 (5)0.0059 (6)0.0084 (6)0.0008 (5)
C80.0320 (6)0.0389 (7)0.0350 (7)0.0010 (6)0.0070 (6)0.0052 (6)
C90.0294 (7)0.0347 (7)0.0298 (6)0.0008 (5)0.0009 (5)0.0008 (6)
Geometric parameters (Å, º) top
N1—C21.3091 (17)C4—C51.4133 (18)
N1—C11.3740 (16)C4—H40.9500
N2—C31.3701 (17)C5—C61.4205 (17)
N2—H2A0.85 (2)C6—C71.369 (2)
N2—H2B0.90 (2)C6—H60.9500
C1—C91.4122 (18)C7—C81.410 (2)
C1—C51.4167 (17)C7—H70.9500
C2—C31.4231 (17)C8—C91.375 (2)
C2—H20.9500C8—H80.9500
C3—C41.3792 (17)C9—H90.9500
C2—N1—C1117.72 (11)C4—C5—C1118.88 (11)
C3—N2—H2A119.4 (14)C4—C5—C6122.66 (12)
C3—N2—H2B116.8 (12)C1—C5—C6118.45 (12)
H2A—N2—H2B122.1 (18)C7—C6—C5120.52 (13)
N1—C1—C9118.50 (12)C7—C6—H6119.7
N1—C1—C5121.52 (12)C5—C6—H6119.7
C9—C1—C5119.98 (11)C6—C7—C8120.78 (12)
N1—C2—C3125.27 (11)C6—C7—H7119.6
N1—C2—H2117.4C8—C7—H7119.6
C3—C2—H2117.4C9—C8—C7120.04 (13)
N2—C3—C4124.50 (12)C9—C8—H8120.0
N2—C3—C2118.07 (11)C7—C8—H8120.0
C4—C3—C2117.42 (12)C8—C9—C1120.22 (13)
C3—C4—C5119.19 (12)C8—C9—H9119.9
C3—C4—H4120.4C1—C9—H9119.9
C5—C4—H4120.4
C2—N1—C1—C9179.86 (12)C9—C1—C5—C4179.41 (11)
C2—N1—C1—C50.20 (19)N1—C1—C5—C6179.74 (12)
C1—N1—C2—C30.3 (2)C9—C1—C5—C60.20 (18)
N1—C2—C3—N2178.55 (13)C4—C5—C6—C7179.12 (12)
N1—C2—C3—C40.3 (2)C1—C5—C6—C70.5 (2)
N2—C3—C4—C5178.95 (12)C5—C6—C7—C80.3 (2)
C2—C3—C4—C50.15 (18)C6—C7—C8—C90.1 (2)
C3—C4—C5—C10.61 (18)C7—C8—C9—C10.4 (2)
C3—C4—C5—C6179.80 (12)N1—C1—C9—C8179.82 (13)
N1—C1—C5—C40.66 (18)C5—C1—C9—C80.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1/C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.90 (2)2.22 (2)3.0761 (17)158.2 (18)
N2—H2A···Cgii0.85 (2)2.60 (2)3.3101 (15)142.3 (19)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8N2
Mr144.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)7.6223 (3), 7.6289 (3), 12.6967 (4)
V3)738.31 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.52 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.950, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6898, 1077, 1015
Rint0.013
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.03
No. of reflections1077
No. of parameters108
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1/C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.90 (2)2.22 (2)3.0761 (17)158.2 (18)
N2—H2A···Cgii0.85 (2)2.60 (2)3.3101 (15)142.3 (19)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y1/2, z+1/2.
 

Acknowledgements

AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, the Department of Atomic Energy and the Government of India for a Young Scientist award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarralda, M. A., Hernandez, R., Pinilla, E. & Rosario Torres, M. (1999). J. Organomet. Chem. 586, 150–158.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaneshiro, K., Fukuyama, Y., Iwamoto, S., Sekiya, S. & Tanaka, K. (2011). Anal. Chem. 83, 3663–3667.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRohmer, M., Meyer, B., Mank, M., Stahl, B., Bahr, U. & Karas, M. (2010). Anal. Chem. 82, 3719–3726.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds