organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Bromo­phen­­oxy)-1-methyl-3-methyl-1H-pyrazole-4-carbaldehyde-O-[(5-meth­­oxy-1,3,4-thia­diazol-2-yl)-meth­yl]oxime

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: gaofz2005@yahoo.com.cn, yjshi2001@yahoo.com.cn

(Received 7 October 2012; accepted 9 October 2012; online 13 October 2012)

In the title mol­ecule, C16H16BrN5O3S, the 1,3,4-thia­diazole ring is situated under the benzene ring, forming a dihedral angle of 86.6 (2)°, and with an S⋯Cg (where Cg is the centroid of the benzene ring) distance of 3.312 (3) Å. The benzene and 1,3,4-thia­diazole rings form dihedral angles of 83.8 (3) and 57.7 (2)°, respectively, with the central pyrazole ring. In the absence of classical hydrogen bonds, the crystal packing is stabilized by a C—H⋯π inter­action..

Related literature

For a related structure, see: Dai et al. (2011[Dai, H., Miao, W.-K., Wu, S.-S., Qin, X. & Fang, J.-X. (2011). Acta Cryst. E67, o775.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrN5O3S

  • Mr = 438.31

  • Triclinic, [P \overline 1]

  • a = 9.732 (3) Å

  • b = 9.832 (2) Å

  • c = 11.166 (3) Å

  • α = 64.55 (2)°

  • β = 69.62 (2)°

  • γ = 75.33 (3)°

  • V = 897.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.642, Tmax = 0.759

  • 7729 measured reflections

  • 3175 independent reflections

  • 2363 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.054

  • S = 1.02

  • 3175 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11ACgi 0.98 2.89 3.652 (4) 125
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In a continuation of our structural study of pyrazole oxime derivatives (Dai et al., 2011), we report here the crystal structure of the title compound, (I). In (I) (Fig. 1), all bonds lengths and angles are similar to those observed in the related compound (Dai et al., 2011). The dihedral angles between the substituted phenyl ring and the pyrazole ring and between the 1,3,4-thiadiazole ring and the pyrazole ring are 83.8 (3)° and 57.7 (2)°, respectively. The crystal packing displays short intermolecular C···C contacts of 3.203 (4) Å.

Related literature top

For a related structure, see: Dai et al. (2011).

Experimental top

To a stirred solution of 1-methyl-3-methyl-5-(4-bromophenoxy)-1H-pyrazole -4-carbaldehyde oxime (3 mmol), and powdered potassium carbonate (9 mmol) in 30 ml of anhydrous acetonitrile, was added 2-chloromethyl-5-methoxy- 1,3,4-thiadiazole (4.2 mmol) at room temperature. The mixture was heated to reflux for 13 h. After removal of the solvent, the residue was separated by column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate to obtain colourless crystals.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.95–0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probabilty displacement ellipsoids.
5-(4-Bromophenoxy)-1-methyl-3-methyl-1H-pyrazole-4-carbaldehyde- O-[(5-methoxy-1,3,4-thiadiazol-2-yl)-methyl]oxime top
Crystal data top
C16H16BrN5O3SZ = 2
Mr = 438.31F(000) = 444
Triclinic, P1Dx = 1.622 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.732 (3) ÅCell parameters from 3391 reflections
b = 9.832 (2) Åθ = 2.1–27.9°
c = 11.166 (3) ŵ = 2.43 mm1
α = 64.55 (2)°T = 113 K
β = 69.62 (2)°Prism, colourless
γ = 75.33 (3)°0.20 × 0.18 × 0.12 mm
V = 897.5 (4) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
3175 independent reflections
Radiation source: rotating anode2363 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.044
Detector resolution: 14.22 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω and ϕ scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1111
Tmin = 0.642, Tmax = 0.759l = 1313
7729 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
3175 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C16H16BrN5O3Sγ = 75.33 (3)°
Mr = 438.31V = 897.5 (4) Å3
Triclinic, P1Z = 2
a = 9.732 (3) ÅMo Kα radiation
b = 9.832 (2) ŵ = 2.43 mm1
c = 11.166 (3) ÅT = 113 K
α = 64.55 (2)°0.20 × 0.18 × 0.12 mm
β = 69.62 (2)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3175 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2363 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.759Rint = 0.044
7729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
3175 reflectionsΔρmin = 0.49 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51369 (3)0.66558 (3)1.32176 (3)0.02651 (10)
S10.54286 (8)0.73735 (8)0.87231 (7)0.02150 (19)
O10.96309 (18)0.88211 (18)0.76885 (17)0.0166 (5)
O20.63830 (19)0.93453 (19)0.53541 (18)0.0202 (5)
O30.3297 (2)0.6561 (2)1.10298 (18)0.0291 (5)
N11.0439 (2)1.1205 (2)0.6791 (2)0.0157 (5)
N21.0308 (2)1.2623 (2)0.5802 (2)0.0173 (6)
N30.7358 (2)0.9392 (2)0.6035 (2)0.0166 (5)
N40.3648 (2)0.7120 (2)0.7625 (2)0.0196 (6)
N50.2883 (2)0.6764 (2)0.9015 (2)0.0202 (6)
C10.6530 (3)0.7382 (3)1.1473 (3)0.0174 (7)
C20.6437 (3)0.8902 (3)1.0675 (3)0.0161 (7)
H20.56760.95871.09990.019*
C30.7454 (3)0.9447 (3)0.9390 (3)0.0155 (7)
H30.73951.04970.88270.019*
C40.8547 (3)0.8423 (3)0.8958 (3)0.0143 (6)
C50.8662 (3)0.6893 (3)0.9768 (3)0.0168 (7)
H50.94400.62130.94550.020*
C60.7646 (3)0.6357 (3)1.1029 (3)0.0176 (7)
H60.77050.53051.15870.021*
C70.9571 (3)1.0319 (3)0.6821 (3)0.0144 (7)
C80.8804 (3)1.1148 (3)0.5847 (3)0.0114 (6)
C90.9324 (3)1.2589 (3)0.5235 (3)0.0150 (7)
C100.8892 (3)1.3946 (3)0.4084 (2)0.0211 (7)
H10A0.92281.48430.40160.032*
H10B0.78161.41050.42640.032*
H10C0.93501.37840.32160.032*
C111.1437 (3)1.0799 (3)0.7631 (3)0.0239 (7)
H11A1.11121.14130.81990.036*
H11B1.24371.09860.70320.036*
H11C1.14360.97210.82290.036*
C120.7799 (3)1.0706 (3)0.5427 (3)0.0153 (6)
H120.74481.14210.46640.018*
C130.5995 (3)0.7852 (3)0.5917 (3)0.0194 (7)
H13A0.69040.71190.59500.023*
H13B0.55330.77530.53010.023*
C140.4958 (3)0.7459 (3)0.7328 (3)0.0151 (6)
C150.3691 (3)0.6834 (3)0.9682 (3)0.0194 (7)
C160.1869 (3)0.6019 (3)1.1781 (3)0.0360 (9)
H16A0.11050.67721.13910.054*
H16B0.16570.58601.27540.054*
H16C0.18790.50581.17080.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02695 (19)0.03281 (19)0.01571 (17)0.00625 (14)0.00270 (14)0.00650 (15)
S10.0216 (4)0.0264 (4)0.0212 (4)0.0059 (4)0.0073 (3)0.0105 (4)
O10.0170 (11)0.0132 (10)0.0140 (11)0.0018 (8)0.0045 (8)0.0019 (9)
O20.0230 (12)0.0190 (11)0.0215 (11)0.0089 (9)0.0136 (9)0.0009 (10)
O30.0335 (13)0.0366 (13)0.0201 (12)0.0128 (11)0.0003 (10)0.0140 (11)
N10.0149 (14)0.0174 (13)0.0178 (13)0.0006 (11)0.0085 (11)0.0070 (11)
N20.0196 (14)0.0154 (13)0.0160 (13)0.0016 (11)0.0063 (11)0.0044 (11)
N30.0142 (13)0.0213 (13)0.0184 (13)0.0059 (11)0.0091 (11)0.0056 (12)
N40.0185 (14)0.0196 (13)0.0202 (14)0.0064 (11)0.0067 (11)0.0036 (12)
N50.0190 (15)0.0195 (14)0.0211 (14)0.0057 (11)0.0055 (11)0.0050 (12)
C10.0212 (17)0.0228 (16)0.0088 (15)0.0060 (14)0.0058 (13)0.0034 (14)
C20.0157 (16)0.0167 (15)0.0195 (17)0.0050 (13)0.0105 (13)0.0095 (14)
C30.0175 (16)0.0106 (14)0.0180 (16)0.0011 (13)0.0096 (13)0.0030 (13)
C40.0155 (16)0.0176 (15)0.0121 (15)0.0018 (13)0.0075 (12)0.0049 (13)
C50.0168 (16)0.0161 (15)0.0170 (16)0.0052 (13)0.0087 (13)0.0066 (13)
C60.0220 (17)0.0134 (15)0.0184 (16)0.0020 (13)0.0130 (13)0.0034 (14)
C70.0130 (16)0.0143 (15)0.0139 (15)0.0015 (13)0.0012 (12)0.0057 (13)
C80.0103 (16)0.0103 (14)0.0130 (15)0.0014 (12)0.0040 (12)0.0031 (13)
C90.0132 (16)0.0184 (15)0.0110 (15)0.0002 (13)0.0023 (13)0.0054 (13)
C100.0225 (17)0.0156 (15)0.0202 (17)0.0059 (13)0.0059 (14)0.0003 (14)
C110.0274 (19)0.0275 (18)0.0245 (17)0.0033 (15)0.0169 (14)0.0091 (15)
C120.0100 (16)0.0194 (16)0.0137 (16)0.0028 (13)0.0055 (12)0.0043 (14)
C130.0216 (17)0.0196 (16)0.0213 (17)0.0060 (14)0.0097 (14)0.0067 (14)
C140.0198 (17)0.0106 (14)0.0219 (17)0.0005 (13)0.0105 (13)0.0096 (13)
C150.0218 (18)0.0133 (15)0.0204 (17)0.0033 (13)0.0021 (14)0.0061 (14)
C160.034 (2)0.039 (2)0.0244 (19)0.0063 (17)0.0040 (16)0.0103 (17)
Geometric parameters (Å, º) top
Br1—C11.897 (2)C3—H30.9500
S1—C151.730 (3)C4—C51.381 (3)
S1—C141.735 (3)C5—C61.376 (3)
O1—C71.371 (3)C5—H50.9500
O1—C41.402 (3)C6—H60.9500
O2—C131.420 (3)C7—C81.378 (3)
O2—N31.426 (3)C8—C91.422 (3)
O3—C151.337 (3)C8—C121.442 (3)
O3—C161.449 (3)C9—C101.492 (3)
N1—C71.342 (3)C10—H10A0.9800
N1—N21.365 (3)C10—H10B0.9800
N1—C111.448 (3)C10—H10C0.9800
N2—C91.333 (3)C11—H11A0.9800
N3—C121.279 (3)C11—H11B0.9800
N4—C141.293 (3)C11—H11C0.9800
N4—N51.395 (3)C12—H120.9500
N5—C151.287 (3)C13—C141.489 (3)
C1—C21.370 (3)C13—H13A0.9900
C1—C61.393 (3)C13—H13B0.9900
C2—C31.395 (3)C16—H16A0.9800
C2—H20.9500C16—H16B0.9800
C3—C41.376 (3)C16—H16C0.9800
C15—S1—C1485.62 (13)N2—C9—C10121.1 (2)
C7—O1—C4117.5 (2)C8—C9—C10127.0 (3)
C13—O2—N3109.17 (19)C9—C10—H10A109.5
C15—O3—C16114.5 (2)C9—C10—H10B109.5
C7—N1—N2111.0 (2)H10A—C10—H10B109.5
C7—N1—C11127.8 (2)C9—C10—H10C109.5
N2—N1—C11121.2 (2)H10A—C10—H10C109.5
C9—N2—N1105.0 (2)H10B—C10—H10C109.5
C12—N3—O2108.0 (2)N1—C11—H11A109.5
C14—N4—N5113.1 (2)N1—C11—H11B109.5
C15—N5—N4110.5 (2)H11A—C11—H11B109.5
C2—C1—C6121.0 (2)N1—C11—H11C109.5
C2—C1—Br1119.8 (2)H11A—C11—H11C109.5
C6—C1—Br1119.2 (2)H11B—C11—H11C109.5
C1—C2—C3120.2 (2)N3—C12—C8122.9 (3)
C1—C2—H2119.9N3—C12—H12118.5
C3—C2—H2119.9C8—C12—H12118.5
C4—C3—C2118.3 (2)O2—C13—C14112.9 (2)
C4—C3—H3120.8O2—C13—H13A109.0
C2—C3—H3120.8C14—C13—H13A109.0
C3—C4—C5121.7 (2)O2—C13—H13B109.0
C3—C4—O1124.0 (2)C14—C13—H13B109.0
C5—C4—O1114.3 (2)H13A—C13—H13B107.8
C6—C5—C4119.8 (3)N4—C14—C13123.1 (2)
C6—C5—H5120.1N4—C14—S1114.4 (2)
C4—C5—H5120.1C13—C14—S1122.53 (19)
C5—C6—C1118.9 (2)N5—C15—O3126.0 (2)
C5—C6—H6120.5N5—C15—S1116.3 (2)
C1—C6—H6120.5O3—C15—S1117.6 (2)
N1—C7—O1119.3 (3)O3—C16—H16A109.5
N1—C7—C8109.1 (2)O3—C16—H16B109.5
O1—C7—C8131.5 (2)H16A—C16—H16B109.5
C7—C8—C9103.0 (2)O3—C16—H16C109.5
C7—C8—C12130.8 (2)H16A—C16—H16C109.5
C9—C8—C12126.0 (3)H16B—C16—H16C109.5
N2—C9—C8111.9 (2)
C7—N1—N2—C90.7 (3)N1—C7—C8—C12176.5 (2)
C11—N1—N2—C9179.4 (2)O1—C7—C8—C120.4 (5)
C13—O2—N3—C12174.10 (19)N1—N2—C9—C80.1 (3)
C14—N4—N5—C151.2 (3)N1—N2—C9—C10179.3 (2)
C6—C1—C2—C30.8 (4)C7—C8—C9—N20.5 (3)
Br1—C1—C2—C3179.91 (19)C12—C8—C9—N2176.4 (2)
C1—C2—C3—C40.4 (4)C7—C8—C9—C10178.7 (2)
C2—C3—C4—C50.7 (4)C12—C8—C9—C102.8 (4)
C2—C3—C4—O1179.6 (2)O2—N3—C12—C8179.9 (2)
C7—O1—C4—C31.3 (4)C7—C8—C12—N36.2 (4)
C7—O1—C4—C5179.0 (2)C9—C8—C12—N3179.1 (2)
C3—C4—C5—C61.4 (4)N3—O2—C13—C1472.8 (3)
O1—C4—C5—C6178.9 (2)N5—N4—C14—C13178.9 (2)
C4—C5—C6—C11.1 (4)N5—N4—C14—S10.4 (3)
C2—C1—C6—C50.0 (4)O2—C13—C14—N4118.3 (3)
Br1—C1—C6—C5179.35 (19)O2—C13—C14—S163.3 (3)
N2—N1—C7—O1175.63 (19)C15—S1—C14—N40.4 (2)
C11—N1—C7—O13.0 (4)C15—S1—C14—C13178.2 (2)
N2—N1—C7—C81.0 (3)N4—N5—C15—O3179.9 (2)
C11—N1—C7—C8179.6 (2)N4—N5—C15—S11.5 (3)
C4—O1—C7—N198.1 (3)C16—O3—C15—N55.5 (4)
C4—O1—C7—C886.2 (3)C16—O3—C15—S1176.12 (18)
N1—C7—C8—C90.9 (3)C14—S1—C15—N51.1 (2)
O1—C7—C8—C9175.2 (2)C14—S1—C15—O3179.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cgi0.982.893.652 (4)125
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H16BrN5O3S
Mr438.31
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.732 (3), 9.832 (2), 11.166 (3)
α, β, γ (°)64.55 (2), 69.62 (2), 75.33 (3)
V3)897.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.642, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
7729, 3175, 2363
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.054, 1.02
No. of reflections3175
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.49

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cgi0.982.893.652 (4)125
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

This work was supported by the Science and Technology Projects Fund of Nantong City (Nos. K2010016, AS2010005 and AS2011011), the Science Foundation of Nantong University (grant No. 11Z046) and the Science Foundation of Nantong University Xinglin College (grant No. 2010 K132).

References

First citationDai, H., Miao, W.-K., Wu, S.-S., Qin, X. & Fang, J.-X. (2011). Acta Cryst. E67, o775.  Web of Science CSD CrossRef IUCr Journals
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds