supplementary materials


fb2267 scheme

Acta Cryst. (2012). E68, o3103    [ doi:10.1107/S1600536812041712 ]

(3aS,4S,6S,7aR)-Hexahydro-3a,5,5-trimethyl-2-phenyl-4,6-methano-1,3,2-benzodioxaborole

T. Lejon, O. V. Gozhina and V. N. Khrustalev

Abstract top

The molecule of the title compound, C16H21BO2, comprises a chiral fused tricyclic system containing five-membered (1,3,2-dioxaborolane), six-membered (cyclohexane) and four-membered (cyclobutane) rings. The 1,3,2-dioxaborolane ring is almost planar (r.m.s. deviation = 0.035 Å), and the syn H and Me substituents at this ring are in an eclipsed conformation. The cyclohexane and cyclobutane rings adopt sofa and butterfly conformations, respectively. The B atom has a trigonal-planar configuration (sum of the bond angles = 360.0°). The phenyl ring is practically coplanar with the 1,3,2-dioxaborolane ring [dihedral angle between the ring planes = 1.96 (8)°]. The absolute structure was determined from the known configuration of (+)-pinanediol which was used in the synthesis. In the crystal, weak C-H...[pi](Ph) interactions occur.

Comment top

2-Substituted (+)-pinanediolboronates are well known compounds (Carmès et al., 2000; Caselli et al., 2003; Morandi et al., 2003; Morandi et al., 2005). In the present work, the (+)-pinanediol phenylboronate (CAS Registry Number: 76110-78-6) has been synthesized by the reaction of phenylboronic acid with (+)-pinanediol in diethyl ether (Fig. 1) as a starting material for the Matteson homologation reaction (Matteson et al., 1983; Matteson, 1989).

The molecule of the title compound, C16H21BO2, comprises a chiral fused tricyclic system containing five-membered (1,3,2-dioxaborolane), six-membered (cyclohexane) and four-membered (cyclobutane) rings (Fig. 2). The 1,3,2-dioxaborolane ring is almost planar (s.u. = 0.035 Å), and syn hydrogen and methyl substituents at this ring are in an eclipsed conformation. The cyclohexane (C8/C4/C3a/C7a/C7/C6 and C5/C4/C3a/C7a/C7/C6) and cyclobutane rings adopt sofa and butterfly conformations, respectively. The boron atom has a trigonal-planar configuration (sum of the bond angles is 360.0 (3)°). The phenyl ring is practically coplanar to the 1,3,2-dioxaborolane ring (the interplanar angle between the ring planes is 1.96 (8)°).

The absolute structure was determined from the known configuration of (+)-pinanediol that has been used in the synthesis. The title molecule possesses four asymmetric centres at C3a, C4, C6 and C7a carbon atoms. The configurations at these asymmetric centres are S, S, S, R, respectively.

The crystal packing of the title molecules is stabilized by the weak intermolecular C8—H8A···π(Ph) [the H···Cgi distance is 2.94 Å; Cg means the centroid of the phenyl ring composed of C12/C13–C17] and C11—H11A···π(Ph) [the H···Cgii distance is 2.97 Å] interactions. Symmetry codes: (i) -1 + x, y, z; (ii) 1/2 - x, 1 - y, 1/2 + z.

Related literature top

For the Matteson homologation reaction, see: Matteson et al. (1983); Matteson (1989). For 2-substituted (+)-pinanediolboronates, see: Carmès et al. (2000); Caselli et al. (2003); Morandi et al. (2003, 2005).

Experimental top

(+)-Pinanediol (10 g, 0.059 mol) was added to a solution of phenylboronic acid (7.16 g, 0.059 mol) in ether (80 ml). The reaction mixture was stirred for 4 h at room temperature. Then the solvent was evaporated under reduced pressure to give the title compound as colourless prismatic crystals. Yield is 15 g (99%). 1H NMR (400 MHz, CDCl3): δ = 8.25 (dd, J = 8.0, 1.4 Hz, 1H), 7.83–7.80 (m, 1H), 7.63–7.35 (m, 3H), 4.46 (dd, J = 8.8, 1.9 Hz, 1H), 2.41 (ddd, J = 8.6, 8.0, 5.6 Hz,1H), 2.23 (ddd, J = 10.8, 6.1, 2.3 Hz, 1H), 2.15 (d, J = 5.9 Hz, 1H), 1.96 (ddd, J = 12.2, 5.5, 3.0 Hz, 2H), 1.49 (s, 3H), 1.32 (s, 3H), 1.23 (d, J = 10.8 Hz, 1H), 0.90 (s, 3H). 13C NMR (101 MHz, CDCl3): δ = 135.62, 134.76, 132.68, 131.15, 127.97, 127.72, 86.22, 78.24, 51.42, 39.54, 38.19, 35.57, 28.71, 27.10, 26.49, 24.04.

Refinement top

All the H atoms were discernible in the difference electron density map. Nevertheless, all the H atoms were fully constrained. The values of the used constraints were following: Caryl—H = 0.95, Cmethyl—H = 0.98, Cmethylene—H = 0.99, Cmethine—H = 1.00 Å; Uiso(H) = 1.2Ueq(Caryl/methylene/methine); Uiso(H) = 1.5Ueq(Cmethyl). After the refinement converged the extremal residual density peaks equalled to -0.197 and 0.302 e A-3. All the highest positive peaks in the range of 0.170–0.302 e A-3) were situated between the covalently bonded atoms. 2225 Friedel pairs were merged in the refinement process. The absolute structure was determined from the known configuration of (+)-pinanediol that had been used in the synthesis.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of phenylboronic acid with (+)-pinanediol.
[Figure 2] Fig. 2. The title molecule with the atom numbering scheme. The displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
(3aS,4S,6S,7aR)-Hexahydro-3a,5,5-trimethyl-2- phenyl-4,6-methano-1,3,2-benzodioxaborole top
Crystal data top
C16H21BO2F(000) = 552
Mr = 256.14Dx = 1.210 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7519 reflections
a = 8.4974 (3) Åθ = 2.3–32.2°
b = 11.8566 (4) ŵ = 0.08 mm1
c = 13.9580 (4) ÅT = 100 K
V = 1406.27 (8) Å3Prism, colourless
Z = 40.25 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2905 independent reflections
Radiation source: fine-focus sealed tube2717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.981, Tmax = 0.986k = 1718
21778 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.0967P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2905 reflectionsΔρmax = 0.30 e Å3
176 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C16H21BO2V = 1406.27 (8) Å3
Mr = 256.14Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4974 (3) ŵ = 0.08 mm1
b = 11.8566 (4) ÅT = 100 K
c = 13.9580 (4) Å0.25 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2905 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2717 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.037
21778 measured reflectionsθmax = 32.7°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.30 e Å3
S = 1.05Δρmin = 0.20 e Å3
2905 reflectionsAbsolute structure: ?
176 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47304 (10)0.46977 (7)0.16126 (6)0.01697 (16)
B20.51357 (15)0.50773 (11)0.07183 (9)0.0155 (2)
O30.43471 (10)0.60223 (7)0.04344 (6)0.01612 (16)
C3A0.33535 (12)0.64035 (9)0.12251 (7)0.01379 (18)
C40.16707 (12)0.65105 (9)0.08556 (7)0.01398 (18)
H40.15030.71170.03680.017*
C50.04178 (12)0.64743 (9)0.16843 (8)0.01482 (18)
C60.05741 (14)0.51655 (9)0.16181 (8)0.0170 (2)
H60.04240.47340.17190.020*
C70.19909 (14)0.47449 (10)0.21897 (8)0.0181 (2)
H7A0.21840.39440.20290.022*
H7B0.17430.47880.28820.022*
C7A0.35083 (13)0.54313 (9)0.19900 (7)0.01454 (19)
H7C0.38860.57650.26060.017*
C80.10773 (14)0.53195 (10)0.05572 (8)0.0182 (2)
H8A0.01900.53290.00970.022*
H8B0.19200.48000.03460.022*
C90.40689 (14)0.75145 (9)0.15593 (8)0.0180 (2)
H9A0.40520.80590.10310.027*
H9B0.51580.73880.17630.027*
H9C0.34570.78110.20980.027*
C100.11904 (13)0.68839 (11)0.13230 (9)0.0195 (2)
H10A0.19920.67360.18120.029*
H10B0.14640.64820.07330.029*
H10C0.11420.76960.11940.029*
C110.07336 (14)0.70381 (10)0.26519 (8)0.0189 (2)
H11A0.01210.68560.30970.028*
H11B0.07910.78570.25660.028*
H11C0.17330.67620.29120.028*
C120.63777 (13)0.44754 (9)0.00804 (8)0.01522 (19)
C130.68207 (13)0.49218 (10)0.08098 (8)0.0167 (2)
H130.63530.56020.10290.020*
C140.79409 (15)0.43795 (10)0.13785 (8)0.0191 (2)
H140.82430.46950.19760.023*
C150.86127 (14)0.33749 (10)0.10656 (9)0.0202 (2)
H150.93560.29950.14590.024*
C160.82009 (15)0.29237 (10)0.01792 (9)0.0219 (2)
H160.86730.22430.00370.026*
C170.70942 (14)0.34746 (10)0.03884 (8)0.0186 (2)
H170.68200.31670.09940.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0158 (4)0.0176 (4)0.0175 (3)0.0048 (3)0.0017 (3)0.0028 (3)
B20.0141 (5)0.0152 (5)0.0171 (5)0.0012 (4)0.0001 (4)0.0003 (4)
O30.0159 (4)0.0166 (3)0.0159 (3)0.0034 (3)0.0031 (3)0.0019 (3)
C3A0.0135 (4)0.0135 (4)0.0144 (4)0.0010 (4)0.0011 (3)0.0007 (3)
C40.0129 (4)0.0138 (4)0.0152 (4)0.0002 (3)0.0001 (3)0.0006 (3)
C50.0127 (4)0.0146 (4)0.0172 (4)0.0005 (4)0.0003 (4)0.0001 (4)
C60.0153 (4)0.0139 (4)0.0217 (5)0.0018 (4)0.0006 (4)0.0010 (4)
C70.0167 (5)0.0157 (4)0.0218 (5)0.0006 (4)0.0016 (4)0.0047 (4)
C7A0.0140 (4)0.0145 (4)0.0151 (4)0.0020 (4)0.0010 (3)0.0008 (4)
C80.0187 (5)0.0169 (5)0.0191 (5)0.0017 (4)0.0019 (4)0.0036 (4)
C90.0157 (5)0.0151 (4)0.0231 (5)0.0019 (4)0.0004 (4)0.0004 (4)
C100.0143 (5)0.0214 (5)0.0228 (5)0.0020 (4)0.0003 (4)0.0026 (4)
C110.0182 (5)0.0203 (5)0.0182 (5)0.0007 (4)0.0022 (4)0.0024 (4)
C120.0138 (4)0.0151 (4)0.0167 (4)0.0001 (4)0.0001 (4)0.0014 (4)
C130.0158 (5)0.0170 (5)0.0173 (4)0.0002 (4)0.0008 (4)0.0004 (4)
C140.0191 (5)0.0213 (5)0.0169 (5)0.0010 (4)0.0014 (4)0.0021 (4)
C150.0179 (5)0.0207 (5)0.0220 (5)0.0013 (4)0.0040 (4)0.0043 (4)
C160.0205 (5)0.0180 (5)0.0272 (5)0.0054 (4)0.0036 (4)0.0004 (4)
C170.0175 (5)0.0180 (5)0.0204 (5)0.0031 (4)0.0034 (4)0.0015 (4)
Geometric parameters (Å, º) top
O1—B21.3709 (15)C8—H8B0.9900
O1—C7A1.4535 (13)C9—H9A0.9800
B2—O31.3644 (15)C9—H9B0.9800
B2—C121.5544 (16)C9—H9C0.9800
O3—C3A1.4612 (13)C10—H10A0.9800
C3A—C91.5239 (15)C10—H10B0.9800
C3A—C41.5254 (15)C10—H10C0.9800
C3A—C7A1.5767 (15)C11—H11A0.9800
C4—C81.5563 (16)C11—H11B0.9800
C4—C51.5727 (15)C11—H11C0.9800
C4—H41.0000C12—C171.4012 (15)
C5—C111.5307 (15)C12—C131.4020 (15)
C5—C101.5355 (15)C13—C141.3963 (16)
C5—C61.5602 (15)C13—H130.9500
C6—C71.5280 (16)C14—C151.3911 (17)
C6—C81.5520 (17)C14—H140.9500
C6—H61.0000C15—C161.3927 (17)
C7—C7A1.5500 (16)C15—H150.9500
C7—H7A0.9900C16—C171.3924 (16)
C7—H7B0.9900C16—H160.9500
C7A—H7C1.0000C17—H170.9500
C8—H8A0.9900
B2—O1—C7A108.24 (9)C6—C8—H8A114.2
O3—B2—O1114.25 (10)C4—C8—H8A114.2
O3—B2—C12122.96 (10)C6—C8—H8B114.2
O1—B2—C12122.78 (10)C4—C8—H8B114.2
B2—O3—C3A108.56 (8)H8A—C8—H8B111.4
O3—C3A—C9105.55 (8)C3A—C9—H9A109.5
O3—C3A—C4108.18 (8)C3A—C9—H9B109.5
C9—C3A—C4113.93 (9)H9A—C9—H9B109.5
O3—C3A—C7A103.72 (8)C3A—C9—H9C109.5
C9—C3A—C7A113.04 (9)H9A—C9—H9C109.5
C4—C3A—C7A111.59 (9)H9B—C9—H9C109.5
C3A—C4—C8108.59 (9)C5—C10—H10A109.5
C3A—C4—C5112.56 (8)C5—C10—H10B109.5
C8—C4—C587.29 (8)H10A—C10—H10B109.5
C3A—C4—H4115.1C5—C10—H10C109.5
C8—C4—H4115.1H10A—C10—H10C109.5
C5—C4—H4115.1H10B—C10—H10C109.5
C11—C5—C10107.92 (9)C5—C11—H11A109.5
C11—C5—C6118.15 (9)C5—C11—H11B109.5
C10—C5—C6111.77 (9)H11A—C11—H11B109.5
C11—C5—C4121.22 (9)C5—C11—H11C109.5
C10—C5—C4110.62 (9)H11A—C11—H11C109.5
C6—C5—C485.75 (8)H11B—C11—H11C109.5
C7—C6—C8108.63 (10)C17—C12—C13118.35 (10)
C7—C6—C5111.14 (9)C17—C12—B2120.53 (10)
C8—C6—C587.88 (8)C13—C12—B2121.11 (10)
C7—C6—H6115.3C14—C13—C12120.87 (11)
C8—C6—H6115.3C14—C13—H13119.6
C5—C6—H6115.3C12—C13—H13119.6
C6—C7—C7A112.97 (9)C15—C14—C13119.71 (11)
C6—C7—H7A109.0C15—C14—H14120.1
C7A—C7—H7A109.0C13—C14—H14120.1
C6—C7—H7B109.0C14—C15—C16120.31 (11)
C7A—C7—H7B109.0C14—C15—H15119.8
H7A—C7—H7B107.8C16—C15—H15119.8
O1—C7A—C7110.20 (9)C17—C16—C15119.67 (11)
O1—C7A—C3A104.58 (8)C17—C16—H16120.2
C7—C7A—C3A115.87 (9)C15—C16—H16120.2
O1—C7A—H7C108.7C16—C17—C12121.07 (11)
C7—C7A—H7C108.7C16—C17—H17119.5
C3A—C7A—H7C108.7C12—C17—H17119.5
C6—C8—C486.60 (8)
C7A—O1—B2—O31.42 (13)B2—O1—C7A—C7119.37 (10)
C7A—O1—B2—C12178.09 (10)B2—O1—C7A—C3A5.80 (11)
O1—B2—O3—C3A4.09 (13)C6—C7—C7A—O1120.17 (10)
C12—B2—O3—C3A176.40 (10)C6—C7—C7A—C3A1.72 (14)
B2—O3—C3A—C9111.83 (10)O3—C3A—C7A—O17.86 (10)
B2—O3—C3A—C4125.86 (10)C9—C3A—C7A—O1105.95 (10)
B2—O3—C3A—C7A7.25 (11)C4—C3A—C7A—O1124.09 (9)
O3—C3A—C4—C863.98 (10)O3—C3A—C7A—C7113.64 (10)
C9—C3A—C4—C8178.99 (9)C9—C3A—C7A—C7132.54 (10)
C7A—C3A—C4—C849.50 (11)C4—C3A—C7A—C72.59 (13)
O3—C3A—C4—C5158.89 (8)C7—C6—C8—C485.15 (9)
C9—C3A—C4—C584.08 (11)C5—C6—C8—C426.47 (8)
C7A—C3A—C4—C545.42 (12)C3A—C4—C8—C686.66 (9)
C3A—C4—C5—C1137.66 (14)C5—C4—C8—C626.25 (8)
C8—C4—C5—C11146.68 (10)O3—B2—C12—C17176.74 (11)
C3A—C4—C5—C10165.43 (9)O1—B2—C12—C172.72 (17)
C8—C4—C5—C1085.55 (10)O3—B2—C12—C133.88 (17)
C3A—C4—C5—C682.88 (10)O1—B2—C12—C13176.66 (11)
C8—C4—C5—C626.13 (8)C17—C12—C13—C140.39 (17)
C11—C5—C6—C740.37 (13)B2—C12—C13—C14179.78 (11)
C10—C5—C6—C7166.49 (9)C12—C13—C14—C150.88 (17)
C4—C5—C6—C782.98 (10)C13—C14—C15—C161.55 (18)
C11—C5—C6—C8149.55 (10)C14—C15—C16—C170.94 (19)
C10—C5—C6—C884.33 (10)C15—C16—C17—C120.36 (19)
C4—C5—C6—C826.20 (8)C13—C12—C17—C161.01 (17)
C8—C6—C7—C7A47.70 (12)B2—C12—C17—C16179.59 (11)
C5—C6—C7—C7A47.38 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 phenyl ring
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cgi0.992.943.7532 (13)140
C11—H11A···Cgii0.982.973.9481 (13)174
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 phenyl ring
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cgi0.992.943.7532 (13)140
C11—H11A···Cgii0.982.973.9481 (13)174
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z+1/2.
references
References top

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, U.S.A.

Bruker (2005). APEX2. Bruker AXS, Madison, Wisconsin, USA.

Carmès, L., Carreaux, F. & Carboni, B. (2000). J. Org. Chem. 65, 5403–5408.

Caselli, E., Danieli, C., Morandi, S., Bonfiglio, B., Forni, A. & Prati, F. (2003). Org. Lett. 5, 4863–4866.

Matteson, D. S. (1989). Chem. Rev. 89, 1535–1551.

Matteson, D. S., Ray, R., Rocks, R. R. & Tsai, D. J. S. (1983). Organometallics, 2, 1536–1543.

Morandi, S., Caselli, E., Forni, A., Bucciarelli, M., Torre, G. & Prati, F. (2005). Tetrahedron Asymmetry, 16, 2918–2926.

Morandi, F., Caselli, E., Morandi, S., Focia, P. J., Blásquez, J., Shoichet, B. K. & Prati, F. (2003). J. Am. Chem. Soc. 125, 685–695.

Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.